
1

Table of Contents
HOOFDSTUK 3 NOTITIES – GENERICS AND COLLECTIONS .. 4

HOOFDSTUK 4 NOTITIES – FUNCTIONAL PROGRAMMING ... 16

HOOFDSTUK 7 NOTITIES - CONCURRENCY ... 30

HOOFDSTUK 8 NOTITIES - IO ... 43

HOOFDSTUK 9 NOTITIES – NIO.2 .. 46

HOOFDSTUK 5 NOTITIES – DATES, STRINGS, AND LOCALIZATION ... 53

HOOFDSTUK 6 NOTITIES – EXCEPTIONS AND ASSERTIONS .. 61

2

Topics, ingeschat naar prioriteit qua studeren en schatting van de hoofdstukken in het boek (ZIE OOK

OVERIGE HOOFDSTUKKEN ONDERAAN)

Belankgrijkste hoofdstukken: 4, App. C, 3, 7, 8, 9, 5, 6. Doorlezen: 2

Paginas (exclusief oefenvragen):

H.4: 172 - 225 (53)

App. C.: 595 - 634 (39)

H.3: 103 - 161 (58)

Totaal 150

H.7: 325 - 393 (68)

H.8: 405 - 443 (38)

H.9: 453 - 496 (43)

Totaal 149

H.5: 233 - 275 (42)

H.6: 283 - 315 (32)

Totaal 74

(H.2: 47 - 94 (47))

LAMBDAS EXAM TOPICS (4, App. C)

- Functional interfaces, java.util.function

- Refactor code that uses inner anonymous classes to lambda expressions. Type inference and

target typing.

- Develop code that uses the built in interfaces included in the java.util.function package

such as Function, Consumer, Supplier, UnaryOperator, Predicate, and Optional APIs,

including the primitive and binary variations of the interfaces.

- Develop code that uses a method reference, including refactoring a lambda expression to a

method reference

 JAVA COLLECTIONS EXAM TOPICS (3, 4, App. C)

- Diamond with generic declarations.

- Iterate collection, filter a collection, sort a collection using lambda expressions.

- Search for data using findFirst(), findAny(), anyMatch(), allMatch(), noneMatch()

- Calculations on Java Streams using count, max, min, average, sum. Save results of a collection

by using the collect method and Collector class. averagingDouble, groupingBy,

joining, partitioningBy

- Java SE 8 Collection improvements: Collection.removeIf(), List.replaceAll(),

Map.computeIfAbsent() and Map.computeIfPresent() methods.

- merge(), flatMap() and map() methods on Java Streams

JAVA STREAMS EXAM TOPICS (4, 8, 7, 9)

- Stream interfaces and pipelines. Create a stream by using the Arrays.stream() and

IntStream.range(). Identify the lambda operations that are lazy

3

- Develop code that uses parallel streams, including decomposition operation and reduction

operation in streams.

CONCURRENCY EXAM TOPICS (7, App. C)

- CyclicBarrier and CopyOnWriteArrayList with a focus on advantages and differences

from the java.util collections

- Lock, ReadWriteLock, ReentrantLock in java.util.concurrent.locks and

java.util.concurrent.atomic packages

- Executor, ExecutorService, Executors, Callable and Future to execute tasks using

Thread pools

- Parallel Fork/Join Framework

LANGUAGE ENHANCEMENTS EXAM TOPICS (4, 6, App. C)

- Switch statements (Strings, binary literals, numeric literals, underscores in literals)

- Try with resource statements, auto-closable resources.

- Multiple exception types in a single catch block

- Static and Default methods

 LOCALIZATION EXAM TOPICS (5, App. C)

- Describe advantages of localizing an application and developing code that defines, reads and

sets the locale with a Locale object.

- Resource bundles

- Time based events using LocalData, LocalTime, LocalDateTime, Instant, Period and
Duration

- Formatting of dates, numbers and currency values with NumberFormat, DateFormat

- Work with dates and times across time zones and manage changes resulting from daylight

savings

JAVA FILE I/O EXAM TOPICS (NIO.2) (8, 9)

- Operate on file and directory paths by using the Paths class

- Check, delete, copy, move with File class

- Recursively access a directory tree by using the DirectoryStream and FileVisitor

interfaces

- Find a file by using the PathMatcher interface with the Java 8 specific improvements including

Files.find(), Files.walk() and lines() method.

- Observe changes in a directory using the WatchService interface

EVENTUEEL DOORLEZEN AAN HET EINDE VAN DE STUDIE:

H.2 en H.6 -> komt wel op het examen maar vrij vaak gebruikt.

NIET LEZEN:

H.1 H. 10

Notes:

4

Algemeen:

Static inner classes can be instantiated. So this is fine:

public class MultipleNested {

 static class Nested() {}

 public static void main(String[] args) {

 Nested nested = new Nested();

 }

}

HOOFDSTUK 3 NOTITIES – GENERICS AND COLLECTIONS

There is a large amount of tables in this chapter that you need to memorize for the exam, some only

contain explanation, others contain lists of methods that you need to know. The list with the most

relevant content that you do not already know by hard:

- Table 3.3, page 121

- Table 3.4, page 130

- Table 3.5, page 135 – 136

- Table 3.6, page 139

- Table 3.7, page 140

- Table 3.8, page 141

- Table 3.9, page 142

- Table 3.10, page 148

- Table 3.11, page 159

- Table 3.12, page 159

Arrays and ArrayList

- An ArrayList can not contain primitives.

- An array can contain objects and primitives.

- Get an item out of a List with get() and check the size with size()

- Access items in the array with brackets and check the size with the length variable.

- Convert an array to a list with Arrays.asList(array);. The implementation returned by

this method is not resizable! Strictly the list is still mutable (because you can still invoke .set()),

but you can’t alter the size of the list by removing and adding elements. You can in that case not

call list.remove(1), for example.

- Set an item in a particular index of the list with list.set(1, “test”); where list is a list of

String.

- Arrays.sort(numbers); sorts the array called numbers in their natural order.

- Strange behavior with Arrays.binarySearch(numbers, 3) on page 105: if the item where

you search for doesn’t exist in the array, it returns one less than the negated index of where the

item should be inserted.

- Collections.sort(list) sorts the list and Collections.binarySearch has the same

behavior as described above.

5

- List contains a an overloaded remove() method. One takes the int of the index to remove,

the other one an object to match it with. If you have a list with Integer objects and you have

an Integer with value 5 in it, then you can remove it by invoking: list.remove(new

Integer(5)); This looks strange but apparently the equals method is used here to search for

an object that is equal to the given object.

Generics

- Formal type parameter – a generic type at the class level. A class can have multiple formal type

parameters. E.g.:

public class SizeLimitedCrate<T, U> {

 private T contents;

 private U sizeLimit;

 public SizeLimitedCrate(T contents, U sizeLimit) {

 this.contents = contents;

 this.sizeLimit = sizeLimit;

 }

}

You can use any name you want for the type parameter although a single upper-case letter is a

common choice.

- Type erasure – generics are just for compile time. Behind the scenes, the compiler replaces all

references to the formal type parameters of a class with Object. Allows the code to be

compatible with older versions of Java.

- Interfaces can also have formal type parameters. There are three ways you can implement an

interface with a formal type parameter:

o You can specify the type of the parameter in the implementing class

o You can implement the interface by using a formal type parameter. This way, you

can let the calling class decide which type to use

o You can omit the type parameter altogether. This shows a warning about raw types

but the code compiles.

Generic methods:

- Can be used for static and normal methods

- Specify the type before the return type. You can return the type itself or a type that takes the

type parameter as its type parameter. Example of the first:

public static <T> T identity(T t) { return t; }

Example of the second:

public static <T> Crate<T> ship(T t) { return new Crate<T>();}

- You can call generic methods normally or you can explicitly specify the type like this:

Box.<String>ship(“packages”);

Bounds

6

- A bounded parameter type is a generic type that specifies a bound for the generic.

- A wildcard generic type is an unknown generic type represented with a question mark.

- Unbounded wildcards: ?

- Wildcard with an upper bound: ? extends type

- Wildcard with a lower bound: ? super type

Unbounded wildcards

- Difference between generics in ArrayLists and arrays:

o You can’t assign a List<Object> to a List<String> but you can do this:

Object[] o = new String[0];

o If you try to put an invalid object in the array, it will throw a

ArrayStoreException but the declaration succeeds.

o Because of type erasure the same can not be done with Lists.

Upper-Bounded wildcards

- Take note of the difference between this:

ArrayList<Number> list = new ArrayList<Integer>(); // DOES NOT COMPILE

And this:

ArrayList<? extends Number> list = new ArrayList<Integer>(); // OK

You can’t just use a subclass with generics but with upper-bounded wildcards you can specify

that any subclass of a class is fine (including the class itself).

- In this context “extends” is used in a general sense to mean either “extends” (as in classes) or

“implements” (as in interfaces).

- When you work with upper bounds or unbounded wildcards, the list becomes logically

immutable (although you can remove items from the list). So this doesn’t work:

static class Sparrow extends Bird {}

static class Bird{}

List<? extends Bird> birds = new ArrayList<Bird>();

birds.add(new Sparrow()); // DOES NOT COMPILE

birds.add(new Bird()); // DOES NOT COMPILE

In other words: a compiler error results from code that attempts to add an item to a list with an

unbounded or upper-bounded wildcard.

Lower bounded wildcards

- With lower bound wildcards a list is no longer immutable

- Note the table on page 121, table 3.3: you have to know what compiles and what doesn’t:

o If you use an upper bound or a unbounded wildcard, a list become immutable (so

you can’s add items to the list in the method that is shown on that page as an

example)

7

o If you use a lower bounded wildcard you can add items to the list that you pass as a

parameter to the method that takes a list with a lower bound wildcard

- Confusing rules with generics:

o This is illegal: List<Object> list = new ArrayList<String>();

o However this works fine:

public static void addSound(List<Object> sounds) {

 sounds.add("quack");

}

public static void main(String[] args) {

 addSound(new ArrayList<Object> list);

}

In other words: the elements of the list can be of a subclass but the list instantiation

must match exactly with the declaration.

o Very tricky example on page 122: If you declare a lower bound as such:

List<? super IOException> exceptions = new

ArrayList<Exception>();

exceptions.add(new Exception()); // DOES NOT COMPILE

exceptions.add(new IOException()); // OK

exceptions.add(new FileNotFoundException()); // OK(!)

Although FileNotFoundException is a sub-class of IOException it does fit in

the list. However, the Exception does not fit. It is unclear why these rules are

present but seem to have something to do with type erasure and Java not knowing

which type to expect. We could have a List<IOException> and Exception

doesn’t fit in there is the explanation. Maybe clearer with the following explanation:

public void m1 (List<? super Number> list) {

 Number n = list.get(0); // WILL NOT COMPILE

}

Read it aloud like this: A List containing instances of Number or its super class(es).

Thus, this will allow you to do this: list.add(new Integer(10)); because

Integer can be assigned to a variable of type Number or its super class, but it will

not allow you to retrieve anything other than Object: Object obj =

list.get(i); because the compiler doesn't know the exact class of objects

contained by list.

Nowhere explained in the book but pops up as an example. The formal type parameter of a method

can also contain a concrete type with the extends keyword in it. So this is possible:

<T extends A> T method(List<T> list) {

 return new B();

}

8

The example above is a generic method with a bounded type parameter. Here you don’t have to use

the ‘?’ in the upper bound declaration of the return type. You specify that you return a subclass of

the type parameter. This is also described here:

https://docs.oracle.com/javase/tutorial/java/generics/boundedTypeParams.html

But seems to be unrelated to upper bound wildcards. Remember that upper bounded wildcards are

used for variables. It is described as “You can use an upper bounded wildcard to relax the restrictions

on a variable”. See:

https://docs.oracle.com/javase/tutorial/java/generics/upperBounded.html

So if you use wildcards in generics in a parameter, for example, it must have a ? in it so this is not

correct:

<X> void method(List<X super B> list) { // DOES NOT COMPILE

}

Another example that is legal because we use upper bounded wildcards here:

List<? extends Integer> intList = new ArrayList<>();

List<? extends Number> numList = intList; // OK. List<? extends Integer>

is a subtype of List<? extends Number>

Using Lists, Sets, Maps and Queues

The Java collections framework is a set of classes in java.util for storing collections.

- List: a list is an ordered collection that allows duplicate entries. Elements in a list can be

accessed by an int index.

- Set: a set is a collection that does not allow duplicate entries.

- Queue: a queue is a collection that orders its element in a specific order for processing. Typically

firs-in-first-out but other orderings are possible.

- Map: a map is a collection that maps keys to values, with no duplicate keys allowed. The

elements are key/value pairs.

List, Queue and Set are sub-interfaces of Collection. Map is not a sub-interface of Collection

but is part of the collections framework.

Generic methods of the Collection interface that are shared with the implementing classes (note:

not Map):

- boolean add(E element) – some collections always return true after an add (eg. a list

allows duplicates so would return true every time you add an instance, even though there is

already an existing one) and some have logic to determine if the add was successful. Note that if

you add an element to a Set that’s duplicate, no exception will be thrown. The add will in that

case simply return false.

- boolean remove(Object object) – removes only one match. Returns false in case a

match was not found. Is overloaded, can also take the index of the object to remove, that

version throws an IndexOutOfBoundsException in case you try to refer to an index that is

not in the collection.
- int size()

- boolean isEmpty()

- void clear()

https://docs.oracle.com/javase/tutorial/java/generics/boundedTypeParams.html
https://docs.oracle.com/javase/tutorial/java/generics/upperBounded.html

9

- boolean contains(Object object) – uses the equals method of the object.

Big O notation

- O(1) – constant time. It doesn’t matter how large the collection is, the answer will always take

the same time to return.

- O(log n) – logarithmic time: A logarithm is a mathematical function that frows much more

slowly than the data size. Logartihmic time is better than lineair time.

- O(n) – linear time: The performance will grow linearly with respect to the size of the collection.

- O(n2) – n squared time: code that has nested loops where each loop goes through the data

takes n squared time.

List implementations

- ArrayList

o Main benefit is that you can lookup elements in constant time

o Adding or removing an alement is slower than accessing an element.

o Good choice in case you are reading more often than (or the same amount as)

writing to the ArrayList.
- LinkedList

o Main benefit is that you can access, add, remove from beginning and end of the list

in constant time.

o Tradeoff is that dealing with an arbitrary index takes lineair time

o Implements List and Queue

o Has all of the methods of a List

o Has additional methods to facilitate adding or removing from the beginning/end of

the list
- Vector

o Replaced by ArrayList

o Slower than ArrayList

o Thread safe (but currently there are better ways to make sure a List is thread safe)

o Shouldn’t be used in new code.
- Stack

o Data structure where you add and remove elements from the top of the stack

o Extends Vector

o Shouldn’t be used in new code, use an ArrayDeque instead.

List methods:

- Deal with indexes

- In addition to the inherited Collection methods, table 3.4 on page 130 are the method

signatures that you need to memorize (add, get, indexOf, lastIndexOf, remove, set)

- Methods that List redefines are other versions of the same method. E.g. List has a add method

that doesn’t return boolean (void add(E element)) and a version that doesn’t return a

boolean and takes an additional int parameter to indicate where the item must be added

(void add(int index, E element))

Set implementations:

- HashSet

o Unordered set of elements that does not allow duplicates.

o Adding elements and checking if an element exists costs constant time

10

o Uses the hashcode of the elements to retrieve them to make it more efficient
- TreeSet

o Implements NavigableSet

o The order in which the elements are added is maintained

o Adding and checking whether an element exists costs logarithmic time (O(log n))

Set methods (behavior):

- The Set interface doesn’t add methods that you need to know for the exam but you do need to

know the difference and the behavior

▪ The equals() method is used to determine equality

▪ The hashCode() method is used to know in which bucket to look so that

Java doesn’t have to look through the whole set to find out if an object is

there.

▪ Best case is that hash codes are unique and Java has to call equals() on

only one object, worst case is that all implementations return the same

hashCode() in which case Java has to call equals() on every element in

the set.

- Memmorize the NavigableSet interface methods and what they do on page 134. In short:

o E lower(E e) – returns the largest element that is < e or null if no such element

o E floor(E e) – returns the largest element that is <= e or null if no such element

o E ceiling(E e) – returns the smallest element that is >= e or null if no such

element

o E higher(E e) – returns the smallest element that is > e or null if no such

element

Queue implementations

- LinkedList

o See above.

o The LinkedList is a double ended queue

▪ Benefit is that you can add and remove items from both ends of the queue

o Implements both List and Queue

o Tradeoff is that it isn’t as efficient as a “pure” Queue
- ArrayDeque

o is a “pure” double-ended queue

o main benefit is that it is more efficient than a LinkedList

Queue methods (ArrayDeque)

- Memmorize table 3.5 on page 135 – 136 which sums up the methods of ArrayDeque that were

added on top of the already existing Collection methods. Table 3.5 is somewhat strangely

ordered. To summarize you can group the following methods

o boolean add(E e), void push(E e), boolean offer(E e). These

methods add elements to the queue.

▪ add() is for queue, adds an element to the back of the queue and returns

true or throws and exception.

▪ offer() is for queue and adds an element to the back of the queue,

returns whether it was successful.

▪ push() adds an element to the front of the queue and is for queue and

stack.

11

o E element(), E remove(), E poll(), E peek(), E pop(). All of these

methods return an element from the queue but the behavior differs

▪ element() returns next element or trows an exception and is for queue.

▪ remove() returns and removes the next element or throws an exception in

case the queue is empty. Is for queue.

▪ poll() returns and removes the next element or returns null if empty

queue. Is for queue.

▪ peek() returns next element or null in case empty queue. Is for queue and

stack.

▪ pop() remove and returns next element or throws an exception if empty

queue. Is for stack.

- Also note the difference between using the ArrayDeque as a queue or a stack

- offer/poll/peek are more common and standard for use with queues.

- Queues can contain duplicate elements

Map implementations

- HashMap

o Stores the keys in a hash table (uses hashCode() of the keys to retrieve values

more efficiently).

o Main benefit is that retrieving and adding by key have constant time.

o Does not maintain order
- TreeMap

o Stores the keys in a sorted tree structure.

o Main benefit is that keys are always in sorted order.

o Tradeoff is that adding and checking if a key is present are both O(log n)

(logarithmic)
- Hashtable

o Old and thread safe. Don’t use it.

Map methods

- Table 3.6 on page 139 lists the methods that you need to know for Map. Doesn’t extend

Collection, more methods are specified on than that interface.

Comparing collection types – see table 3.7 and 3.8. Note that Set doesn’t have to be

added/removed in a specific order and that Queue can have duplicate elements.

Tricky: the chapter doesn’t mention sorted and whether a type uses the compareTo method up to

the page where table 3.8 pops up (page 141). None of the types are sorted by default (while you

might think that this is the case for List) except for TreeSet and TreeMap. Those are also the

only two implementations that use the compareTo method. Whether an implementation uses

compareTo or not is different from whether an implementation uses the equals method in case it

was unable to find an element in the Set by hashCode. They are different concepts. A Queue is

said to be unsorted but the elements are ordered in a specific way for processing. List orders the

items in which you add them but they are not sorted by, for example, their natural order. Only Tree

implementations immediately sort the elements as they get added.

Data structures that do not allow nulls:

- TreeMap (null values are ok but not null keys) because of the sort functionality.

12

- TreeSet because of the sort functionality.
- ArrayDeque

- Hashtable (no null keys or values)

Comparator vs. Comparable

- For string objects, order is defined according to the Unicode character mapping: numbers sort

before letters and uppercase letters sort before lowercase letters.

- Sort objects you define by implementing Comparable.

- You can sort a list of objects by invoking Collections.sort()

- Comparator – a class to specify that you want to sort in a different order than the object itself

provides.

- Comparable (java.lang.Comparable)

o Interface with one method:

public interface Comparable<T> {

 int compareTo(T o);

}

o Returns < 0 if current object is smaller than the argument;

o Returns > 0 if current object is larger than the argument;

o Returns 0 if current object is equal to the argument.

o Remember that in case you implement order for an int that implementing it this

way:

id – a.id

.. sorts in ascending order. Implementing it shis way:

a.id – id

- Comparator (java.util.Comparator)

o Interface that has a method called int compare(T o1, T o2) (as opposed to

compareTo in Comparable interface)

o Used to define a sort order different from what is implemented in Comparable or

for classes that do not implement the Comparable interface.

o Can be implemented by using an anonymous class or by using lambda expressions

(since it is a functional interface).

- Comparator makes sense to implement as a lambda, for Comparable it doesn’t.

- It is common to sort nulls before any other values

- Comparator contains default and static methods to chain the comparison if you want to

compare multiple fields:

Comparator<Squirrel> c = Comparator.comparing(s -> s.getSpecies());

c = c.thenComparingInt(s -> s.getWeight());

return c.compare(s1, s2);

- It also offers a reverseOrder method to sort in reverse order

(Comparator.reverseOrder()).

13

Searching and Sorting

- Ararys and Collections have overloaded sort() and binarySearch() methods.

- They take an optional Comparator parameter.

- The list or array must be sorted before it is searched using the same definition of order for both.

- Collections.sort version with single parameter requires objects in the collection to sort to

implement the Comparable interface.

- Both sort and binarySearch allow you to pass in a Comparator when you don’t want to use

the natural order.

- Collections.binarySearch() allows you to search for an item using a Comparator

implementation. If you pass in a comparator that sorts in reverse order and the list you provide

is sorted ascending, the result when you call binarySearch is undefined:

List<String> names = Arrays.asList(“Fluffy”, “Hoppy”);

Comparator<String> c = Comparator.reverseOrder();

int index = Collections.binarySearch(names, “Hoppy”, c);

System.out.println(index); // Returns -1 ie. undefined.

- If you use add objects to a sorted collection like TreeSet, the compiler doesn’t check if the

added object implements Comparable but throws an exception at runtime.

- You can instantiate a TreeSet with a comparator:

Set<Rabbit> rabbit = new TreeSet<>(new Comparator<Rabbit>() {

 public int compare(Rabbit r1, Rabbit r2) {

 return r1.i = r2.id;

 }

});

rabbit.add(new Rabbit());

Additions in Java 8

- Method references (actually something that belongs to chapter 4 but somehow described in

chapter 3 too)

o :: tells java to automatically pass the parameters to a method

o Four formats for method references:

▪ Static methods:

Consumer<List<Integer>> methodRef = Collections::sort;

The lambda version is:

Consumer<List<Integer>> lambda = l ->

Collections.sort(l);

Collections.sort is overloaded (there is also a version that accepts a

Comparator) but because we are implementing a Consumer in this

example, which takes only one parameter, Java knows that we want to use

the single parameter version of the sort method in this case.

14

▪ Instance methods on a specific instance:

String str = “abc”;

Predicate<String> methodRef2 = str::startsWith;

The lambda version would be:

Predicate<String> lambda2 = s -> str.startsWith(s);

▪ Instance methods on an instance to be determined at runtime:

Predicate<String> methodRef3 = String::isEmpty

In this case Java will invoke the isEmpty method on the string that is

passed to the functional interface implementation at runtime. The lambda

version would look like this:

Predicate<String> lambda3 = s -> s.isEmpty();

Tricky: you can use method references only in case the parameter that is

used is the instance variable itself. So this implementation:

list.removeIf(s -> s.startsWith(“A”));

Does not allow you to use a method reference (ie. String::startsWith)

because the parameter to the startsWith method is not the parameter

that is passed to the test method of the Predicate interface.

▪ Constructors (constructor reference):

Supplier<ArrayList> methodRef4 = ArrayList::new;

Uses the Supplier functional interface to instantiate an ArrayList. The

lambda expression would look like:

Supplier<ArrayLIst> lambda4 = () -> new ArrayList();

- Removing conditionally:

o Specify what needs to be removed with:

boolean removeIf(Predicate<? super E> filter)

o Can be called on implementations of the Collections interface like List.

- Updating all elements:

o New method on the Lists interface

o Method signature is:

void replaceAll(UnaryOperator<E> o);

15

- Looping through a Collection

o Use the forEach construct with a lambda expression.

o Takes a Consumer implementation

o Example: cats.forEach(System.out::println)

- New Java 8 Map APIs

o putIfAbsent() puts an item in a Map if its key is absent or if the value of the key is

null. E.g. favorites.putIfAbsent(“Sam”, “Tram”); (given that favorites is a

Map<String, String>)

o merge() allows adding logic to the problem of what to choose. It needs a mapping

implementation of BiFunction to add this logic.

▪ Example looks as follows:

BiFunction<String, String, String> mapper = (v1, v2) ->

v1.length() > v2.length ? v1 : v2;

Map<String, String> favorites = new HashMap<>();

favorites.put(“Jenny”, “Bus tour”);

favorites.put(“Tom”, “Tram”);

String jenny = favorites.merge(“Jenny”, “Skyride”,

mapper);

String tom = favorites.merge(“Tom”, “Skyride”, mapper);

System.out.println(favorites); // {Tom = Skyride, Jenny =

Bus tour}

System.out.println(jenny); // Bus Tour

System.out.println(tom); // Skyride

The merge is called on the Collection type, in this case a HashMap. The

map is updated only in case the entry has a value that is larger than the

given value (“Skyride”).

▪ Also has logic for what happens in case values in the Map are null or

missing keys are present. In this case it doesn’t use the BiFunction at all

but simply uses the new value.

Remember that the value of the key is replaced with the result of the

mapping function that is provided in the implementation of the

BiFunction. The BiFunction’s apply method parameters are the

existing value (that is looked up using the key that is also provided as a

parameter to the merge method) and the new value (which is the second

parameter of the merge method). The rules are best described in the

Javadoc of the function:

“If the specified key is not already associated with a value or is associated

with null, associates it with the given non-null value. Otherwise, replaces the

associated value with the results of the given remapping function, or

removes if the result is null.”

Strange: if the key is not in the map and the function’s result is null, the key

16

is added to the Map.

▪ So as stated above, if the mapping function is called and returns null the

key on which the mapping was called is removed. Note that keys that do not

exist are still added to the map. For example if you have a map with two

keys (“Jenny” and “Tom”) and a mapper that returns null where you call

the map.merge method with a key that doesn’t exist:

favorites.merge(“Sam”, “Skyride”, mapper), a key “Sam” with

value “Skyride” is added to the Map).

o computeIfPresent and computeIfAbsent

▪ computeIfPresent()if the value for the specified key is present and non-

null, attempts to compute a new mapping given the key and its current

mapped value.

▪ computeIfAbsent() runs only if the key isn’t present or its associated

value is null. Uses a Function since there is no value already in the map.

Only the key is passed as the input. If the method returns null it doesn’t

add the key (since the key was never added in the first place).

o For completeness the signatures of the methods:

default V computeIfAbsent(K key, Function<? super K,? extends V>

mappingFunction)

default V computeIfPresent(K key, BiFunction<? super K,? super V,? extends V>

remappingFunction)

default V merge(K key, V value, BiFunction<? super V,? super V,? extends V>

remappingFunction)

o Tables 3.11 and 3.12 give an overview of the methods and what happens in certain

scenarios.

HOOFDSTUK 4 NOTITIES – FUNCTIONAL PROGRAMMING

Tables in chapter 4:

o tabel 4.1 blz. 173 (MEMORIZE)

o tabel 4.2 blz. 184

o tabel 4.3 blz. 187

o tabel 4.4 blz. 190

o tabel 4.5 blz. 204

o tabel 4.6 blz. 207 (MEMORIZE)

o tabel 4.7 blz. 208 (MEMORIZE)

o tabel 4.8 blz. 209 (MEMORIZE)

o tabel 4.9 blz. 210 (MEMORIZE)

o tabel 4.10 blz. 212

o tabel 4.11 blz. 218 (?)

Lambda content from chapter 2:

17

- Functional interface has exactly one abstract method. Can be implemented by a concrete class

or by a lambda expression.

- Is optionally annotated with @FunctionalInterface

o Not mandatory but recommended

o Adding methods in addition to the existing abstract method will cause a compilation

error in case the interface is annotated but this will not be the case if it is not

annotated, possibly breaking code that already uses it as a functional interface

o Sub-interfaces (extending the functional interface) may contain:

▪ No method at all (since they extend the functional interface which already

contains a method)

▪ Override the method

▪ Static methods with an implementation (note that you can declare and

implement static methods at te interface level)

▪ Default methods

- A lambda expression “is a block of code that gets passed around, like an anonymous method”

- Additional explanation to example on page 55: with a lambda expression you implement the

functional interface. Methods that accept a functional interface can have the implementation of

the interface passed to it. So:

a -> a.canHop();

…is the implementation of the CheckTrait interface and was passed to the print(…) method

which accepted a CheckTrait interface as parameter. The return type of the implementation

must be compatible with the method that is defined in the functional interface.

- Two variants of the same:

- Parentheses () can be omitted in a lambda expression:

o if there is exactly one input parameter

o if the type is not explicitly stated in the expression.

18

- Expressions that have zero or more than one input parameters therefore require parentheses.

- Multiple lines of code require braces: {} and a semicolon to terminate statements.

- Some examples with 0 or 1 parameters (look strange but are all valid):

() -> true // 0 parameters

a -> { return a.startsWith(“test”);} // 1 parameter

(String a) -> a.startsWith(“test”) // 1 parameter

(int x) -> {} // 1 parameter

(int y) -> {return;} // 1 parameter

- Other examples with 2 parameters (in these examples, one of the parameters is not used):

(a, b) -> a.startsWith(“test”);

(String a, String b) -> a.startsWith(“test”);

- Providing the data types in lambda expression parameters is optional but if you provide it for

one parameter, you must provide them for the rest too.

- You can’t re-declare a parameter that is provided with a lambda expression (you can declare

other variables). So this is false:

(a, b) -> { int a = 0; return 5; } // DOES NOT COMPILE

But this is fine:

(a, b) -> {int c = 0; return 5;} // OK

- Deferred execution: code is specified now but runs later.

- Java provides a bunch of functional interfaces for common problems. In chapter 2 an example

was implemented where a test() method was defined. This logic, however, is also provided in

the java.util.function.Predicate functional interface.

- You can also cast in lambda expressions. This can come in handy if there is an ambiguity in the

lambda implementations (see page 342 – 343):

use((Callable<Integer>)() -> {throw new IOException(“”);});

Chapter 4 notes:

- Effectively final – if you can add the final modifier to a local variable, it is “effectively final” (so

the variable didn’t change in the rest of the code)

- Lambda’s use the same access rules as inner classes. Lambda expressions can access:

o Static variables

o Instance variables

o Effectively final method parameters

o Effectively final local variables

- Strange remark about the interface Runnable on page 174: “(…) All you need to know is that

Runnable doesn’t take any parameters, return any data, or use generics.” Looking in the Javadoc

it says that Runnable is a functional interface. It has a run() method that has a return type of

void.

- Something about the Supplier functional interface and other functional interfaces. If you see

this:

19

Supplier<LocalDate> s1 = LocalDate::now;

… then LocalDate::now is the implementation of the functional interface’s method get().

So after this you can call:

LocalDate localDate = s1.get();

… to instantiate an instance of LocalDate. Obviously quite useless but just an example.

Another notation for the implementation is:

Supplier<LocalDate> s2 = () -> LocalDate.now();

Of course this can also be done directly in the lambda expression where it is appropriate.

Nested generics are also possible:

Supplier<ArrayList<String>> s1 = ArrayList<String>::new;

ArrayList<String> list = s1.get();

Note that you can’t use the diamond operator in the above example (ArrayList<>::new is

invalid however it can be used if you explicitly define a parameterless lambda expression: () -

> new ArrayList<>();)

- Also note situations where a functional interface takes two parameters, like the BiConsumer

interface. This:

Map<String, Integer> map = new HashMap<>();

BiConsumer<String, Integer> b1 = map::put;

…infers that the parameters to put are going to be provided when you call the accept()

method of the BiConsumer like this:

b1.accept(“test”, 1);

… this puts an item in the map variable. The static kind of call that we saw earlier to a factory

method is not allowed here (e.g. Map::put – it’s the implementation of the accept() method

that doesn’t return anything and gets two parameters in this interface. It has access to the local

variable: map that we instantiated before declaring the BiConsumer b1).

If a functional interface returns a value, then you can use the :: kind of calling a method. So

this is allowed:

Predicate<String> p = String::isEmpty;

… becaue the functional interface’s method test() returns a value (of type boolean). Another

way of writing the above is:

Predicate<String> p = x -> x.isEmpty();

20

- If a functional interface has two parameters, Java can infer their values when you call it later on.

The implementation can be as simple as:

BiFunction<String, String, String> b1 = String::concat;

This tells Java to implement the apply() function by taking the two parameters and catting

them together and finally return a String. The alternative form of writing the above interface

implementation would be:

BiFunction<String, String, String> b1 = (aString, toAdd) ->

aString.concat(toAdd);

Calling this would look as follows:

System.out.println(b1.apply(“put”, “together”)); // puttogether

- The UnaryOperator and BinaryOperator expect the parameter(-s) type and the return type

to be the same. That’s why when you declare these function interfaces, you only specify one

generic type like this:

BinaryOperator<String> b1 = String::concat

The above does the same as the BiFunction example above.

- Watch out for trick questions:

Which functional interface would you use if you want to return a Boolean and take an

Integer as a parameter?

The answer is Function, not Predicate because Predicate returns a boolean (the

primitive type) and not a Boolean.

Optionals

- Optional.ofNullable(value); <- the value may be null, if it is this method returns an

Optional.empty() optional otherwise an Optional.of(value).

- Note that Optional.orElse() doesn’t take a supplier but a type T. So this does not work:

opt.orElse (IllegalStateException::new); // DOES NOT COMPILE

IllegalStateException::new is the implementation of a Supplier while orElse doesn’t

take a Supplier. You would have to use the orElseThrow(Supplier s) instead.

- Three methods that take functional parameters:
o ifPresent(Consumer c)

o orElseGet(Supplier s)

o orElseThrow(Supplier s)

Streams

- Stream (java.util.stream.Stream) concepts:

21

o Data is created when needed (lazy)

o Pipeline – all operations in a stream occur in a pipeline

o Stream operations – operations that occur on the elements of the stream

▪ Intermediate operations – transforms the stream into another one. There

can be as few or as many intermediate operations as you’d like. Since

streams use lazy evaluation, the intermediate operations do not run until

the terminal operation runs.

▪ Terminal operations – produces a result. Since streams can be used only

once, the stream is no longer valid after a terminal operation completes.

Only one terminal operation can exist per stream. Not before a terminal

operation is reached will the pipeline start.

o Infinite stream – the stream doesn’t end unless there is a terminal operation

o Not all terminal operations terminate the stream in case the stream is infinite

o The three parts of a pipeline:

▪ Source: where the stream comes from

▪ Intermediate operations

▪ Terminal operation

- Beware of questions in the exam where they are using streams a second time. You can only use

a stream once so this would throw an exception:

Predicate<? super String> predicate = s -> s.length() > 3;

Stream<String> stream = Stream.iterate(“-“, (s) -> s + s);

boolean b1 = stream.noneMatch(predicate);

boolean b2 = stream.anyMatch(predicate); // INVALID: stream was already

terminated

System.out.println(b1 + “ “ + b2);

Stream Sources:

- Create a finite Stream using factory methods like:
o Stream<String> empty = Stream.empty();

o Stream<Integer> single = Stream.of(1);

o Stream<Integer> from Array = Stream.of(1, 2, 3);

- Or convert from List to Stream:
List<String> list = Arrays.asList(“a”, “b”, “c”);
Stream<String> fromList = list.stream();
Stream<String> fromListParallel = list.parallelStream();

- Create an infinite Stream using generate or iterate:
o Stream<Double> randoms = Stream.generate(Math::random);

o Stream<Integer> oddNumbers = Stream.iterate(1, n -> n + 2);

- iterate() is a method that takes the seed, the starting point, as its first parameter and a

lambda expression as its second. The lambda expression gets passed in the previous value and

generates the next value.

- Infinite streams may be turned into a finite stream using operations.

Terminal operations:

- Can be performed without any intermediate operations, not the other way around (note: with

this they mean that you can only get a result out of a stream if you have at least a terminal

operator. Of you only have an intermediate operator, the code still compiles but nothing

happens).

22

- Reductions is a special kind of terminal operation where all of the contents of the stream are

combined into a single primitive or Object (e.g. an int or a Collection).
- long count()

o Determines the number of elements in a finite stream

o Hangs for an infinite stream

o Is a reduction because it looks at each element and returns one value

- Optional<T> min(Comparator <? super T> Comparator) / Optional<T>
max(Comparator <? super T> Comparator)

o Find the smallest or largest value in a finite stream according to the given sort order.

o Hang on infinite streams

o Are reductions, return a single value after looking at the entire stream.

o Returns an Optional because there are streams where no min/max could be

found.
- Optional<T> findFirst() / Optional<T> findAny()

o Return an element in the stream unless the stream is empty

o If the stream is empty return empty Optional

o Work with infinite streams and finite streams.

o findAny() is useful when you are working with a parallel stream because it gives

Java the flexibility to return to you the first element it comes by rather than the one

that needs to be first in the stream based on the intermediate operations.

o Note that the example in the book is a little bit strange:

Stream<String> infinite = Stream.generate(() -> “chimp”);

infinite.findAny().ifPresent(System.out::println); // chimp

Normally you would use it in combination with intermediate operations like
filter()

o Are not reductions
- boolean anyMatch(Predicate <? Super T> predicate) / allMatch /

noneMatch

o Search a stream and return information about how the stream pertains to the

predicate.

o May or may not terminate for infinite streams (depends on data)

o Are not reductions
- void forEach(Consumer<? Super T> action)

o Loop construct for stream, does not terminate on infinite streams

o You can call forEach on a Collection or on a stream

o Traditional for loops are not possible on a Stream (they don’t implement

Iterable)

- Reduce has multiple variants with the following signatures:

T reduce(T identity, BinaryOperator<T> accumulator)

Optional<T> reduce(BinaryOperator<T> accumulator)

<U> U reduce(U identity, BiFunction<U, ? super T, U> accumulator,

BinaryOperator<U> combiner)

o Most common way to use a reduction is to start with an initial value and keep

merging it with the next value.

23

o Example for multiplying the integers in a stream:

Stream<Integer> s = Stream.of(1, 5, 4, 2);
Integer sum = s.reduce(1, (a, b) -> a*b);

o Identity is not always necessary. If you don’t specify one, an Optional is returned

as no data may be present (you are using the second form of the reduce method as

described). Three choices for what could be in the optional:

▪ If the stream is empty, an empty Optional is returned

▪ If the stream has one element, it is returned

▪ If the stream has multiple elements, the accumulator is applied to combine

them.

o The parameter of the first two reduce methods is a BinaryOperator and the third

form of the reduce method also takes a BinaryOperator as its combiner. So what

you specify as a parameter in the reduce method is the implementation of that

functional interface. Recall that the BinaryOperator takes two parameters and

returns a value that has the same type as the parameters.

o The third method signature is used when we are processing collections in parallel

but it doesn’t mean that you have to use it on a parallel stream.

o Note that the accumulator parameter is a BiFunction and the combiner is a

BinaryOperator. The accumulator operates on the stream elements and this may

be done in parallel. The combiner then combines the parts of the reduction that may

have been handled by parallel streams into one value.

The example in the book operates on a non-parallel stream and basically just

multiplies all the entries again. It also uses the same BinaryOperator for the two

parameters. Apparantly a sub-interface of BiFunction is also allowed as the first

parameter:

BinaryOperator<Integer> op = (a, b) -> a * b;

Stream<Integer> stream = Stream.of(1, 4, 2, 3, 4);

stream.reduce(1, op, op);

- collect() is a special type of reduction called a mutable reduction. The signatures are:

<R> R collect(Supplier<R> supplier, BiConsumer<R, <? super T>

accumulator, BiConsumer<R, R> combiner)

<R, A> R collect(Collector <? super T, A, R> collector)

o It is more efficient than a regular reduction because we use the same mutable

object while accumulating.

o Common mutable objects include StringBuilder and ArrayList.

o Lets us get data out of streams and into another form

o The first signature:

▪ Here, too, the combiner is used to combine parallel stream outcomes to one

collection. The example of the book uses a StringBuilder to generate a

specific String using the collect method:

Stream<String> stream = Stream.of(“w”, “o”, “l”, “f”);

24

StringBuilder word = stream.collect(StringBuilder::new,

StringBuider::append, StringBuilder::append);

Again the stream is not a parallel stream but demonstrates how you can use

the collect method.

o Note that the book mentions that it is important to know how to implement your

own collector (see page 195). In the second signature the collect method expects a
Collector

o Java provides an interface with common collectors. Examples:

Stream<String> stream = Stream.of(“w”, “o”, “l”, “f”);

TreeSet<String> strings =

Stream.collect(Collectors.toCollection(TreeSet::new));

Stream<String> stream = Stream.of(“w”, “o”, “l”, “f”);

Set<String> set = stream.of(Collectors.toSet()); // makes no

guarantees as to which set you will get.

- Common intermediate operations:
o filter()

o distinct()

o limit() and skip()
o map()

o flatMap()

o sorted()

o peek()

Descriptions and explanations below – you don’t have to memorize the signature but understand

what the methods do.

- Stream<T> filter(Predicate<? super T> predicate) – returns a Stream with

elements that match the given expression.

- Stream<T> distinct() – returns a stream with duplicate items removed.

- Stream<T> limit(int maxSize) and Stream<T> skip(int n)

o make a stream smaller or make an infinite stream finite

Stream.iterate(1, n -> n +

1).skip(5).limit(2).forEach(System.out::println); //67

Makes an infinite stream finite by skipping the first five and limit them by 2.

- <R> Stream<R> map(Function <? super T, ? extends R> mapper)

o For transforming data

o Example (convert list of string to list of integers):

Stream<String> s = Stream.of(“monkey”, “gorilla”, “bonobo”);

s.map(String::length).forEach(System.out::println); // 676

- <R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends

R>> mapper)

25

o Method takes each element in the stream and makes any elements it contains top-

level elements in a single stream

o Helpful when you want to remove empty elements in a stream or want to combine a

stream of lists

The example creates three lists and puts them in a stream like this:

Stream<List<String>> animals = Stream.of(zero, one, two); //

zero, one and two are instances of List<String>

animals.flatMap(l -> l.stream()).forEach(System.out::println);

Notice how the Stream (animals) was combined and the elements were put in one

stream and iterated with a forEach.

- Stream<T> sorted()
Stream<T> sorted(Comparator<? Super T> comparator)

o Returns a stream with the elements sorted.

o Uses natural ordering unless we provide a comparator

o Can take a Comparator implementation

o Warning in the book about compatibility of how you provide the comparator. You

can’t use Comparator::reverseOrder (the method reference) if you want to use

Comparator.reverseOrder() in the sorted method because the signature of the

sorted method that takes a Comparator lets you implement the Comparator

functional interface. This method takes two String parameters and returns an int.

As Comparator.reverseOrder() doesn’t do that, you can’t pass it as a method

reference (see page 199)
- Stream<T> peek(Consumer<? super T> action)

o Useful for debugging because it allows us to perform a stream operation without

changing the content

o Note that although peek is not meant to change the content, Java does not prevent

you from writing a consumer (the parameter of the peek method) that changes the

content.

- Keep in mind that there are a lot of questions about how the stream is processed. Step 1 to 8 in

the book on pages 201 and 202 illustrate that well. Basically, all of the intermediate operations

look at each element in the stream. If you instantiate an infinite stream and then tell it to sort, it

will never stop running, even if you have a limit thereafter:

Stream.generate(() -> “Elsa”)

.filter(n -> n.length() == 4)

.sorted()

.limit(2)

.forEach(System.out::println) // WILL HANG

If you switch the sorted and limit then the stream iterates two times and turns into a finite

stream (doesn’t hang).

Primitive streams

- Add common functionality that would otherwise be less easy to do (like calculating the average

of int elements)

- Three types of primitive Streams:

26

o IntStream – for byte, char, short, int

o DoubleStream – for double and float

o LongStream – for long

- Creating a primitive type stream can be done in several ways:

o Similar to Stream:
▪ DoubleStream emptyStream = DoubleStream.empty()

▪ IntStream intStream = IntStream.of(1, 2, 3);

▪ DoubleStream random =

DoubleStream.generate(Math::random);

▪ DoubleStream fractions = DoubleStream.iterate(.5, d ->

d/2);

o Taking a range of numbers:
▪ IntStream.range(1, 6); // 1, 2, 3, 4, 5, not including 6

▪ IntStream.rangeClosed(1, 5) // 1, 2, 3, 4, 5, 6 (so

inclusive range)

o Creating from another Stream type:

▪ See table 4.6 p. 207. Basically, all stream types contain mapTo… methods. If

you map to the same type, you use the map() method.

▪ A mapping function must be provided as the parameter to these functions.

▪ See table 4.7 p.208 for these functions. The functions have predictable

names:

• From Stream to another Stream requires a Function parameter

• From primitive type to Stream requires a DoubleFunction,

IntFunction and LongFunction for the corresponding types

• From Stream to primitive type Stream requires a

ToDoubleFunction, ToIntFunction and ToLongFunction

• From primitive type to the same type requires a

DoubleUnaryOperator, IntUnaryOperator,
LongUnaryOperator

• From one primitive type Stream to another requires

DoubleToIntFunction, DoubleToLongFunction,

IntToDoubleFunction, IntToLongFunction,

LongToDoubleFunction and LongToIntFunction.

Primitive optionals

- There are separate Optional classes for primitives:
o DoubleOptional

o IntOptional

o LongOptional

- Are for primitive optionals (so Optional<Double> is for Double, OptionalDouble is for

double)

- Terminal operations like min() or findAny() return the corresponding Optional type for

primitives (sum() doesn’t return an Optional). avg() always returns an OptionalDouble.

- Summarizing statistics can be done with the summary statistics classes:
o IntSummaryStatistics

o LongSummaryStatistics

o DoubleSummaryStatistics

- Book shows an example with IntSummaryStatistics. You can declare it by calling a method

on a primitive stream:

27

IntSummaryStatistics stats = ints.summaryStatistics();

Where ints is a IntStream. Then you can invoke methods like
o getMax()
o getMin()

o getCount()

Functional interfaces for primitives

- BooleanSupplier with one method: boolean getAsBoolean()

- BooleanSupplier is taken as a separate paragraph in the book because it doesn’t apply to the

primitive streams that were mentioned earlier. They have separate functional interfaces in table

4.9 (p. 211) which you have to memorize.

- There are no BiConsumer, BiFunction and BiPredicate interface for the primitive

streams.

- Additionally, primitive functional interfaces exist which you must also memorize (table 4.10 p.

212 – 213)

Advanced stream pipeline concepts

- Remember that the Optional.map() method takes a Function as the parameter and

therefore returns a specific type of Object. It does not work if that method returns an

Optional. In that case you can use flatMap() instead

- There is a huge list of available collectors that you can pass to the collect() method (by using

the Collectors class and pass that to collect). Example:

stream.collect(Collectors.joining(“, “);

The collectors are summed up in table 4.11 on page 218.

- You have to know the Collectors methods that are mentioned in the book. Question 11 uses

the Collectors.joining() method which expects the elements that it gets to be of type

String.

- Basic collectors allow you to…

o …implement joining functional interfaces (using the Collectors.joining()

method),

o …collect the average and other reductions by using collectors like

Collectors.averagingInt(),

o … collect the elements to a specific type of collection with methods like

Collectors.toCollection() supplying the type of collection you want the

elements in the stream to be put in.

- Collecting elements in Maps

o Collectors.toMap() -> you need to provide the implementation for the

functions to collect the keys and the values for the map like:

Stream<String> stream = Stream.of(“lions”, “tigers”, “bears”);

Map<String, Integer> map = stream.collect(Collectors.toMap(s-

>s, String::length); // creates a map with string keys and the

length of the strings as values

28

o Returning the same value in a lambda as the parameter (like in the above example:

s-> s) can also be done by invoking Function.identity()

o The toMap() method also provides an overloaded version where you can provide a

merge implementation and a version where you can provide the type of map to

create. See examples on page 220.

- Collecting using grouping, partitioning and mapping

o groupingBy() tells the collect() method that it should group all of the

elements of the stream into lists and organize them by the function that you

provide. The keys in the map are the function value and the result are the values.

o So you declare a Map with a certain type as the key and a List with a certain type as

the values. For example:

Map<Integer, List<String>> map =

stream.collect(Collectors.groupingBy(String::length));

This example takes a stream of strings and groups them by their length. The strings

are separated by a comma.

o Another version of the groupingBy method allows you to provide a so called

downstream collector which can do something special with the values. You can, for

example to use a Set rather than a List as the results in the map’s values you can

invoke:

stream.collect(Collectors.groupingBy(String::length,

Collectors.toSet()));

This results in a Map<Integer, Set<String>>.

o Another version lets you provide the type of map you want to create :

stream.collect(Collectors.groupingBy(String::length,

TreeMap::new, Collectors.toSet()));

This results in a TreeMap<Integer, Set<String>>

o Partitioning results in two groups: true and false. It splits a list into two parts. It

takes a Predicate implementation like:

Stream<String> stream = Stream.of(“lions”, “tigers”, “bears”);

Map<Boolean, List<String>> map =

stream.collect(Collectors.partitioningBy(s -> s.length <= 5);

o If there are no values for a particular Boolean key, it is still inserted in the map (but

with an empty value)

o You can change the type of List by using an overloaded version of the

partitioningBy method that accepts a Collector:

Map<Boolean, Set<String>> map =

stream.collect(Collectors.partitioningBy(s -> s.length <= 5,

Collectors.toSet()));

o There is no possibility to change the type of map in the partitioningBy method.

29

o For methods that take a downstream collector we can use any of the collectors. For

example grouping by the length of strings grouping by how many we have of each

length:

Map<Integer, Long> map =

stream.collect(Collectors.groupingBy(String::length,

Collectors.counting()));

This creates a map with two keys (5 and 6) and values 2 and 1 (assuming we collect

on the stream of animals above).

o The mapping() collector provides the functionality to go down a level and add

another collector. Most complicated example you should know for the exam:

Stream<String> stream = Stream.of(“lions”, “tigers”, “bears”);

Map<Integer, Optional<Character>> map =

stream.collect(Collectors.groupingBy(String::length,

Collectors.mapping(s -> s.charAt(0),

Collectors.minBy(Comparator.naturalOrder()))));

The above would contain a map with keys 5 and 6 and an Optional with value ‘b’

for 5 and an Optional with value ‘t’ for 6. First it groups by the lengths of the

strings (two are 5 in size and one is 6 in size). Then it takes the first character of the

elements and returns the smallest character by natural order.

Additional notes from Enthuware tests:

- An interface can have abstract methods (among static and default methods). Keep in mind that

it is legal to put “abstract” in the declaration of the method but that it is redundant. So this is

fine:

interface F {

 default void m() {}

 abstract void n();

}

- If you use the primitive suppliers (DoubleSupplier, IntSupplier, LongSupplier) they can

automatically unbox primitives as well. So this is fine:

DoubleSupplier ds1 = b1::getPrice; // Assuming that getPrice returns the

Double wrapper

Of course, if getPrice() would return a null value it would throw a NPE.

Additional notes from the questions:

- At one point they ask which methods in the Stream class are reductions. In one of the answers

they have sum(). Although this is a reduction, it is not of the Stream class but the IntStream

class. Beware of these kinds of pitfalls.

- Watch out with the iterate function. If you use a post increment operator, this operator is not

applied to the incrementor so this would print infinite 1s:

30

Stream.iterate(1, x -> x++);

If you want them to be incremented then you have to use ++x.

HOOFDSTUK 7 NOTITIES - CONCURRENCY

Tables: 7.1 page 329; table 7.2 page 338 – 339; table 7.3 page 340; table 7.4 page 341; table 7.5

page 346; table 7.6 page 348; table 7.7 and 7.8 page 353 – 354; table 7.9 page 360; table 7.10 and

7.11 page 362 – 363; table 7.12 page 365

- A Thread is the smallest unit of execution that can be scheduled by the OS

- A task is a single unit of work performed by a thread.

o Will commonly be implemented as a lambda expression

o A thread can complete multiple independent tasks but only one task at a time

- Types of Threads:

o System thread – created by the JVM, runs in the background (e.g. the gc). When a

system thread encounters a problem it can not recover from it generates an Error

and not an Exception

o User-defined thread – created by the developer to accomplish a specific task.

- Most Java applications are multi-threaded, even if they only contain one user defined thread

that calls the main() method.

- If an application only contains one user-defined thread we call it a single threaded application

- Thread scheduling is done by the Thread scheduler.

- Context switch – when the threads allotted time is complete but the thread has not finished

processing

- A thread can interrupt or supersede another thread if it has a higher thread priotiy than the

other thread. The most important priorities are stored in the Thread class:

o Thread.MIN_PRIORITY – 1

o Thread.NORM_PRIORITY – 5 (default)

o Thread.MAX_PRIORITY – 10

java.lang.Runnable

- A functional interface that takes no parameters and doesn’t return a value (method is void

run())

- Beware that lambda expressions that return a value are incompatible with the Runnable

interface. The following examples are therefore invalid:

() -> “” // INVALID

() -> 5 // INVALID

() – {return new Object();} // INVALID

The following examples are valid:

() -> System.out.println(“Hello world”); // OK

() -> {inti=10; i++;} // OK

() -> {return;} // OK

() -> {} // OK

31

Creating a Thread

- Executing a task with a Thread is a two step process:

o Define the Thread with the corresponding task to do

o Start the Thread by calling Thread.start()

- Defining a task can be done in two ways:

o Provide a Runnable object or lambda expression to the Thread constructor

o Create a class that extends Thread and overrides the run() method

- Providing a Runnable object: you can define a class that implements the Runnable object and

instantiate that and pass it to a Thread like this:

public static void main(String[] args) {

 (new Thread(new PrintData())).start();

}

Where PrintData implements the Runnable interface. Obviously the above could have also

been done by passing a lambda expression to the Thread constructor.

- Invoking start() on the Thread starts the Thread in a separate thread on the operating

system.

- Extending the Thread class and overriding the run method is less common.

- Important to realize that the run() method (with which you can also start a Thread) does not

start the thread in a separate processing thread on the operating system. Instead, it runs in the

same thread as the one that called it. So this will run sequentially:

new PrintData().run();

(new Thread(new PrintData())).run();

(new ReadInventoryThread()).run();

Invoking start(), however, will run them in a separate processing thread making the order of

when the threads are run indeterminate. The order within a single Thread is still linear, of

course (e.g. the for() loop in a Thread would still be ordered).

- It is encouraged to use the Concurrency API instead of creating your own threads.

Polling with sleep()

- Thread.sleep() pauses the current thread for a specified number of milliseconds.

- If you start a separate Thread in the main method and then call Thread.sleep(), it pauses

the Thread that is associated with the main() method while the user defined thread continues

to work

- Throws InterruptedException.

The ExecutorService (java.util.concurrent)

- Is an interface that can be instantiated using the Executors factory.

- ExecutorService.newSingleThreadExecutor() gives you a version that handles tasks in

the order in which they were added to the executor.

- execute() lets it perform asynchronous tasks. Takes a Runnable so can be implemented with

a lambda expression and returns void (fire-and-forget):

ExecutorService service = null;

32

try {

 service.execute(() -> {for (int i = 0; I <3; i++)

System.out.println(“Pringing record: “ +i);});

 (… other calls to execute…)

} finally {

 if(service!=null) service.shutdown();

}

- You must call the shutdown() method after use. If you don’t the application will never

terminate. Upon calling shutdown() the tasks that have already been submitted will still be

executed until there are no more tasks. If tasks are submitted while the ExecutorService’s

shutdown() is called, a RejectedExecutionException will be thrown.

- Note that the main() method runs in a separate thread so in case additional logic is present

after calling the execute() method on the ExecutorService, they may be processed earlier

than the tasks that are submitted to the ExecutorService.

- shutdownNow() attempts to stop all running tasks and returns a List<Runnable> of tasks

that were submitted to the thread executor but never startd.

- ExecutorService does not implement AutoClosable

Submitting tasks to the ExecutorService

- execute() doesn’t return anything so results are not directly available to the calling thread.

- Table 7.2 to memorize – 5 methods to execute tasks

- The methods that take a collection object containing a list of tasks to execute, execute

synchronously. Unlike the other methods these methods will wait until the results are available

before returning control to the enclosing program.

o invokeAll() returns a List of ordered Future objects with one Future object

corresponding to each submitted task in the order they were in the original

collection.

o Even though Future.isDone() returns trye for each element in the returned

List, a task could have completed normally or thrown an exception.

o Will wait indefinitely until all tasks are complete.

o invokeAny() executes a collection of tasks and returns the result of one of the

tasks that successfully completes execution, cancelling all unfinished tasks

o Any completed task may be returned (although the first task to finish is often

returned)

o Method will wait indefiniteily until at least one task completes.

o Overloaded versions of these methods exist that take a timeout value and a

TimeUnit parameter.

Waiting for results

- Table 7.3, page 340: Future methods. The get() method on a Future object obtained from

the submit() method that takes a Runnable will always return null. Calling get() on a

Future method that comes back from a submit() used with a Callable returns the actual

result or null in case there is no result.

Callable

- Functional interface similar to Runnable but its call() method returns a value and throws a

checked exception.

33

- The result is actually the result of the task so if you define something like this:

Future<Integer> result = service.submit(() -> 30 +11);

And then print the result like this:

System.out.println(result.get()); // Prints 41.

Waiting for all tasks to finish

- If you don’t need the results of the Future objects, you can also call

awaitTermination(long timeout, TimeUnit unit) on the ExecutorService object.

You do this after calling shutdown on the ExecutorService.

- You can call isTerminated() on the ExecutorService to determine if all the tasks have

been finished.

Scheduling tasks

- ScheduledExecutorService (sub-interface of ExecutorService) can be used to schedule

(repeated) tasks.

- Instantiate using the Executors factory:

ScheduledExecutorService service =

Executors.newSingleThreadScheduledExecutor();

- Memmorize methods in table 7.5 page 346. They return a ScheduledFuture<V> which is

identical to Future except that it also has a getDelay() method that returns the delay when it

was created. The scheduleAtFixedRate() and scheduleAtFixedDelay()take a

Runnable instance as a parameter because it would otherwise endlessly generate Future

objects if it would be a Callable.

Increasing concurrency with pools

- Memmorize table 7.6, page 348.

- Pooled thread executors can execute tasks in parallel until the pool is exhausted. In that case the

task will be queued by the thread executor and wait to e executed.

- Use newCachedThreadPool() only for many short lived asynchronous tasks, not for long-lived

processes.

- With a ScheduledExecutorService obtained with the newScheduledThreadPool(), the

creation of an endless set of tasks can be avoided if the pool size is sufficiently large. A thread is

returned to the thread pool when a thread finishes and result in new threads being available for

the next tasks as they come up.

Synchronizing data access

- Concurrency API added a new package: java.util.concurrent.atomic to help

coordinate access to primitive values and object references.

- Table 7.7 lists the atomic classes and table 7.8 lists the common acomic methods that you must

know.

- To synchronize access: use a monitor aka lock.

o Use an Object a a monitor with the synchronized keyword

SheepManager manager = new SheepManager();

34

synchronized(manager) {

 // Work to be completed by one thread at a time

}

o Using the current object as the monitor can be done with (see page 355):

synchronized(this) {

…

}

o You can even lock on any object, just as long as it is the same object:

private final Object lock = new Object();

private void incrementAndReport() {

 synchronized(lock) {

 System.out.print((++sheepCount)+” “);

 }

}

o Automatically synchronizing on the object itself can be done with the synchronized

keyword on the method itself, which is equivalent to using synchronized(this):

private synchronized void incrementAndReport() {

 …

}

o You can also synchronize on static methods in which case the class is used as the

monitor. This can also be done on the method and with the synchronized keyword

but using the class instead. These two are equivalent:

public static void printDaysWork() {

 synchronized(SheepManager.class) {

 ..

 }

}

public static synchronized void printDaysWork() {

 …

}

Using concurrent Collections

- Concurrent collections allows developers to use collections in multiple threads without having to

manage synchronizing access to them. Instead of using the synchronized keyword on methods

that access a certain Collection class, Map for example, you could use the

ConcurrentHashMap implementation instead.

- Purpose of the concurrent collection classes is to solve memory consistency errors.

- Note that ConcurrentModificationExceptions may also be thrown even if you don’t

access objects with multiple Threads. See example on page 359 where a key of a map is removed

in a for loop. This throws a ConcurrentModificationException because the corresponding

Iterator is not updated when the remove occurs. If you would use a ConcurrentHashMap

instead, however, this would be the case and no exception will be thrown.

- Memmorize table 7.9 on page 360.

35

- The BlockingQueue interface, implemented by LinkedBlockingQueue and

LinkedBlockingDeque introduces two methods that allows to wait for an item to be added

and to be retrieved (table 7.10 page 361 - 362):

o offer(E element, long timeout, TimeUnit unit) – adds an item to the

queue waiting the specified time, returning false if time elapses before space is

available.

o poll(long timeout, TimeUnit unit) – Retrieves and removes an item from

the queue, waiting the specified time, returning null if the time elapsed before the

item is available.

- Each of these methods throw a checked InterruptedException so must be handled.

- A LinkedBlockingDeque maintains a linked list between elements.

- A LinkedBlockingDeque can obviously also use the above methods without the timing aspect

(so just the one that is offered by the Queue interface – offer(E element))

- The BlockingDeque interface, implemented by LinkedBlockingDeque, also offers methods

with time parameters (table 7.11 page 362 – 363):

o offerFirst(E e, long timeout, TimeUnit unit) – Adds an item to the

front of the queue, waiting a specifie time, returning false if time elapses before

space is available.

o offerLast(E e, long timeout, TimeUnit unit) – Adds an item to the tail

of the queue, waiting a specified time, returning false if time elspses before space

is available.

o pollFirst(long timeout, TimeUnit unit) – Retrieves and removes an item

from the front of the queue, waiting the specifid time, returning null if the time

slapses before the item is available.

o pollLast(long timeout, TimeUnit unit) – Retrieves and removes an item

from the tail of the queue, waiting the specified time, returning null if the time

elapses before the item is available.

- Each also throw a InterruptedException and must therefore be handled.

- Remember that a LinkedBlockingDeque, as it implements both the BlockingDeque and

BlockingQueue interfaces, can use the all the methods that are summed up in the tables on

pages 361 – 363.

- The SkipList classes ConcurrentSkipListSet and ConcurrentSkipListMap are

counterparts of TreeSet and TreeMap resp.

- Are sorted concurrent collections.

- The CopyOnWriteArrayList and CopyOnWriteArraySet copy all of their elements to a new

underlying structure anytime an element is added, modified or removed from the collection.

o Modified: the reference is changed (not the contents)

o Useful in multi-threaded environments that need to iterate the collection. Used in

situations where reads are far more common than writes (writes are very expensive)

o Any iterator established prior to a modification will not see the changes but will

iterate over the original elements prior to the modification.

- If you know at the time of creation that your object requires synchronization, then you should

use one of the concurrent collection classes from table 7.9. If you are working with an existing

collection that is not a concurrent class and need to access it among multiple threads, you can

wrap them using the methods in table 7.12 on page 365.

o Are methods from the Collections class

o Do not synchronize iterators that you may create from the synchronized collection.

36

o You need to use a synchronization block if you need to iterate over any of the

returned collections in table 7.12:

List<Integer> list = Collections.synchronizedList(new

ArrayList<>(Arrays.asList(4, 3, 53)));

synchronized(list) {

 for(int i : list) {

 System.out.print(“ “ + i);

 }

}

o Throw an exception if they are modified within an oterator by a single thread (unlike

the concurrent collections): ConcurrentModificationException

Working with parallel streams

- Serial stream - a stream in which the results are ordered with only one entry being processed at

a time.

- Parallel stream – a stream that is capable of processing results concurrently, using multiple

threads.

- Two ways of creating a parallel stream:

o Using parallel() on an existing stream. Is an intermediate operation on an

existing stream. Example:

Arrays.asList(1, 2, 4, 6, 8).stream().parallel();

o Using parallelStream(). This creates a stream out of a Collection. The

interface Collection offers this method. Example:

Arrays.asList(1, 2, 3, 6, 8).parallelStream();

- Independent operations are operations that do not require or impact the results of another

element of the stream.

- Many common streams including map(), forEach(), and filter() can be processed

independently although order is never guaranteed.

- Note that this is especially visible when you introduce side effects in a lambda expression. For

example:

Arrays.asList(“jackal”, “kangaroo”, “lemur”).parallelStream().map(s ->

{System.out.println(s);return

s.toUpperCase();}).forEach(System.out::println);

This can result in a list of output that is unpredictable. Like this:

kangaroo

KANGAROO

lemur

jackal

JACKAL

LEMUR

When using streams, you should avoid any lambda expressions that can produce side effects.

37

- You should remember that parallel streams can process results independently, although the

order of the results cannot be determined ahead of time.

- A stateful lambda expression is one whose result depends on any state that migt change during

the execution of a pipeline. A stateless lambda expression is one whose result does not depend

on any state that might change during the execution of a pipeline.

See interesting example on page 371 where it is demonstrated that the forEachOrdered

method maintains the order in which the list was before entering the stream even though it is a

parallel stream but that as soon as you print the collection it created that the order may be

completely different. The key here is that by modifying the data in parallel causes unpredictable

results.

- It is strongly recommended to avoid stateful operations when using parallel streams (and in

general also when you use serial streams).

- Any time you are working with a collection with a parallel stream, it is recommended that you

use a concurrent collection.

- Reduction operations on parallel streams are referred to as parallel reductions. The results can

be different from what you expect when working with serial streams.

- Reduction example with findAny on page 372 -373:

o if you invoke findAny() on a parallelStream, the JVM selects the first thread to

finish the task and retrieves its data while on a serial stream the return value is

consistent.

- Stream operations based on order (findFirst(), limit(), skip() etc.) may perform more

slowly due to the coordination that has to take place. The results, however, will be consistent

with a serial stream. Interesting example on page 373 with a combination of reductions in a

chain skip(5).limit(2).findFirst(): will return the same result on ordered serial and

parallel streams.

- Combining results with reduce() – recall that the first parameter is the identity, the second is

the accumulator and the third parameter is the combiner.

o In the three-argument version of reduce(), the accumulator is a BiFunction,

while the combiner is a BinaryOperator.

o The Streams API prevents the problem where the order of the stream elements are

not maintained when performing reductions as long as the arguments to the

reduce() operation adhere to certain principles:

▪ The identity must be defined such that for all elements in the stream u,

combiner.apply(identity, u) is equal to u.

▪ The accumulator operator op must be associative and stateless such that (a

op b) op c is equal to a op (b or c).

▪ The combiner operator must also be associative and stateless and

compatible with the identity, such that for all u and t combiner.apply(u,

accumulator.apply(identity, t)) is equal to
accumulator.apply(u, t)

Notes to explain the above in own words:

▪ The first statement says that if you use the identity and feed them to the

implementation of the combiner function (the BinaryOperator), then the

identity should not change the element. So in the example on page 374 (top)

38

the identity was an empty string. The combiner was a concatenation of the

element and the string. It doesn’t matter which element you picked, adding

an empty string to it doesn’t change the element.

▪ The second statement talks about operators between the elements and their

behavior. It doesn’t matter which values a, b or c have if the operator is

counting them up, for example. The operator is said to be associative. This is

not the case when you use the subtraction operator. If a = 2, b = 3 and a – b

= c so that c in this case is -1, the same can not be true for a – b or c because

2 – (-1) would be 3.

▪ For the combiner the rules are the same. The parts of the streams and the

operations to combine them to one result must be predictable.

o Although one and two argument versions of the reduce() method do support

parallel processing, it is recommended that you use the three-argument version of

reduce() when working with parallel streams.

- collect() also has a three argument version that takes accumulator, and combiner operators,

along with a supplier operator instead of an identity.

o The accumulator and combiner operations must also be associative and stateless,

with the combiner operation compatible with the accumulator operator. In this

manner, the collect() method can be performed as a parallel reduction.

o You should use a concurrent collection to combine the results, ensuring that the

result of concurrent threads do not result in a

ConcurrentModificationException.

- Using the one argument collect() method

o The one-argument version of collect() takes a collector argument: Set<String>
set = stream.collect(Collectors.toSet());

o If you want to ensure that a parallel reduction will be performed efficiently in Java

using a collector, the following requirements apply (note: the book only talks about

the fact that if you do not abide the rules that this only reduces the performance. It

doesn’t state that it doesn’t work – see page 376 - 377)

▪ The stream is parallel

▪ The parameter of the collect operation has the

Collector.Characteristics.CONCURRENT characteristic.

▪ Either the stream is unordered, or the collector has the characteristic
Collector.Characteristics.UNORDERED

o Any class that implements the Collector interface includes a

characteristics() method that returns a set of available attributes for the

collector.

o The book shows two examples of a parallel reduction with a parallel stream. The first

uses Collectors.toConcurrentMap() and the second a

Collectors.groupingByConcurrent() method.

Managing concurrent processes

- Two classes that allow you to coordinate tasks among a group of related threads that you

must know for the exam: CyclicBarrier and ForkJoinPool
- CyclicBarrier

o Is used with a limit and an optional Runnable, which is executed as soon as the

limit is reached.

o You instantiate a CyclicBarrier with its constructor

39

o You call the await() method on the CyclicBarrier instance to let it wait until

the threads have handled the code before that until the limit is reached.

o After a CyclicBarrier is broken, all threads are released and the number of

threads waiting on the CyclicBarrier goes back to zero.

o If you use a thread pool, make sure that you set the number of available threads to

at least the amount of the limit of the CyclicBarrier, otherwise the code will

hang waiting on the limit of the CyclicBarrier to be reached.
- ForkJoinPool

o Use when you don’t know upfront how many thread and tasks we needed to

perform.

o Relies on the concept of recursion

- Base case: a non-recursive method that is used to terminate the recursive

path.

- Recursive case: a recursive method that may call itself one or multiple times

to solve a problem.

- Always make sure that a recursive solution arrives at its base case at some

point (not doing so would result in a infinite loop and ultimately a

StackOverflowError)

o Applying the fork/join framework requires us to perform three steps:

1. Create a ForkJoinTask – requires defining the recursive process.

2. Create a ForkJoinPool

3. Start the ForkJoinTask

o For the exam you must know how to implement a ForkJoin solution by extending

one of two classes (both implement ForkJoinTask interface):
- RecursiveAction

• The example on page 383 starts off by defining arguments on which

the task will operate.

• They then override the compute() method in which they define the

base case and the recusive case.

• The base case in this example tests if the end – start <= 3

because they want each task to perform at most three recursions

(the example is implementing a weighing action for zoo workers). In

the example, they also perform the actual task of the action.

• In the example the recursive path will only take place if there are

more than three iterations left, in which case the task is split up.

• In the recursive part they define how to separate these tasks. They

call invokeAll which is an inherited method with a new instance

of the implemented RecursiveAction (in this example the

WeighAnimalAction). In the example they pass two instances,

one task handles the task from the start to the middle and the other

task from the middle to the end.

• In the main method they actually start the task by instantiating the

Task itself and a ForkJoinPool:

ForkJoinTask<?> task = new

WeightAnimalAction(weights, 0, weights.length); //

weights is a Double array of size 10.

ForkJoinPool pool = new ForkJoinPool();

40

pool.invoke(task);

- RecursiveTask

• RecursiveTask uses the fork() and join() methods to

perform actions in separate threads and combine the results.

• The RecursiveTask’s compute() method returns a value so the

example in the book updates the used example for the

RecursiveAction by returning a Double in the compute()

method. The base case just returns the Double value of the

operation it did (as an example counted the sum of the weights so

far.

• In that method, the recursive case is quite different because that

uses the fork() and join() methods to divide and combine the

tasks:

RecursiveTask<Double> otherTask = new

WeighAnimalTask(weights, start, middle);

otherTask.fork();

return new WeighAnimalTask(weights, middle,

end).compute() + otherTask.join();

• The fork() method instructs the fork/join framework to perform

that action in a separate thread while the join() method causes

the current thread to wait for the results.

• The implementation of instantiating the pool and invoking the tasks

is identical except that the invoke() method now returns a value

(a Double in this case). So that is used as follows:

Double sum = pool.invoke(task);

• Be careful that the join() method instructs the current thread to

wait for the results and that the order in which you call fork() and

join() are important. The following example executes with single

threaded performance:

RecursiveTask<Double> otherTask = new

WeighAnimalTask(weights, start, middle);

Double otherResult = otherTask.fork().join();

return new WeighAnimalTask(weights, middle,

end).compute() + otherResult;

Here, the current thread first waits on the start – middle task and

then proceeds with the task that handles the middle – end part.

- Tips from the book to identify Fork/Join issues copied here:

• The class should extend RecursiveAction or RecursiveTask

41

• If the class extends RecursiveAction, it should override a

protected void compute() method that takes no arguments and

returns void.

• If the class extends RecursiveTask, then it should override a

protected V compute() method that takes no arguments and

returns a generic type listed in the class definition.

• The invokeAll() method takes two instances of the fork/join class

and does not return a result.

• The fork() method casuses a new task to be submitted to the pool

and is similar to the thread executor submit() method.

• The join() method is called after the fork() method and causes

the current thread to wait for the results of a subtask.

• Unlike fork(), calling compute() within a compute() method

causes the task to wait for the results of the subtask.

• The fork() method should be called before the current thread

performs a compute() operation, with join() called to read the

results afterward.

• Since compute() takes no arguments, the constructor of the class is

often used to pass instructions to the task.

Identifying threading problems

- Liveness is the ability of the application to be able to execute in a timely manner.

- Three types of liveness problems that you should know for the exam:

o Deadlock – occurs when two or more threads are blocked forever, each waiting on

the other. Common strategy to solve this is for threads to order their resource

requests.

o Starvation – occurs when a single thread is perpetually (voortdurend) denied access

to a shared resource or lock. The thread is still active, but it is unable to complete its

work as a result of other threads constantly taking the resource that they are trying

to access.

o Livelock – occurs when two or more threads are conceptually blocked forever,

although they are each still active and trying to complete their task. Livelock is a

special case of resource starvation in which two or more threads actively try to

acquire a set of locks, are unable to do so, and restart part of the process.

- A race condition is an undesirable result that occurs when two tasks, which should be

completed sequentially, are completed at the same time.

- Race conditions lead to invalid data if they are not properly handled.

Notes from tests of Enthuware:

- Although not specifically mentioned in the book, the Enthuware exams stress that it is

important to know the contents of the ConcurrentMap interface of which

ConcurrentHashMap is an implementation. It says:

It is a Map providing additional atomic putIfAbsent, remove, and replace methods.

Note that they also expect you to know that putIfAbsent, remove and replace methods

42

are already in the Map interface and are not specifically added to the ConcurrentMap

interface.

Questions:

2 – both Callable call() and Runnable run() can throw unchecked exceptions. Tricky about

this question is that it is confusing because only call() throws a checked exception (which doesn’t

mean that both methods can not throw unchecked exceptions).

3 – here, a ScheduledExecutorService was assigned to ExecutorService while

Executors.newSingleThreadScheduledExecotur() returns in instance that implements

ScheduledExecutorService. You must know this difference, you can’t assign a

ScheduledExecutorService to an ExecutorService.

4 – keep in mind that if you use a non-atomic variable, like the long[] in this question, that the

outcome of incrementing it using several threads at the same time can not be determined.

7 – Confusion here about the call to Arrays.asList() in the code because in chapter 3 it is said

that if you construct a List out of an array, that the list is not structurally mutable (you can’t add

and remove items). The CopyOnWriteArrayList in that question is backed by the list that is

constructed using the Arrays.asList() call but apparently you can still add items to the

CopyOnWriteArrayList because the list itself (the original list) is not actually modified here (since

upon every modification a copy is created). Taking that into account option A is correct.

8 – although sorted() is called, the findAny() just returns the value value from the first thread

that retrieves a record. Therefor the outcome can not be predicted.

9 – there are so many details about this question that it is unreastic that you can memorize this

but…:

- …although compute() is a protected method you are allowed to make it public as you are

allowed to make the overridden method more accessible (not the other way around).

- Because the compute method in this example returns a value, MyTask extends

RecursiveTask (the only thing that you memorized correctly when you filled in the questions)

- Because the code calls join() immediately after fork(), the process waits until the compute

has returned. It therefore produces single-threaded performance time.

10 – here, the three argument version of the reduce method is used. You must memorize the fact

that the second argument is a BiFunction and how this behaves if you see implementations. Here,

the statement is that c1 is a String and c2 is an int. So the first parameter of the BiFunction is an

element of the stream and the second parameter is part of the result. In this case, the code tries to

invoke “length()” on an int.

12 – because the base condition is never met, in infinite loop will be the result causing an error at

runtime (StackOverflowError).

13 – the call to flatMap() should have triggered you that this returns a new stream that is single

threaded by default. So the collect() is always execute in a single-threaded fashion here.

14 – the offerFirst, offerLast, pollFirst and pollLast methods with timing parameters all

throw the checked exception InterruptedException which should have handled (or declared to be

43

thrown) here. Also note that even if the method declared that it threw that exception that the

outcome can not be determined beforehand.

21 – I doubt that this is coming back in the exam but beware that the question is “…. which of the

following are possible results…” so what is in the method is really up to your imagination and can

therefore have any content whatsoever. What is key here is that the rest of the implementation runs

fine without compilation errors and that the rest of the options can all be true (because the method

that is part of the task that is submitted can have any possible implementation within the

boundaries of the signature that is provided).

22 – the execute() method returns void.

HOOFDSTUK 8 NOTITIES - IO

- Memmorize table 8.1, page 409. Probably only worth memorizing what the methods do instead

of memorizing them all. Table 8.2 on page 417 -> note: BufferedInputStream and

BufferedOutputStream are not listed but are being described in the chapter. You have to

know them too: are the high level versions of the FileInputStream and FileOutputStream

for reading and writing in a buffered manner. From an existing InputStream/OutputStream.

Example:

InputStream is = new BufferedInputStream(new

FileInputStream("filename"))

Then reading and writing as shown on page 423.

InputStreamReader and OutputStreamReader are listed but deemed to be “out-of-scope”

for the exam. Furthermore, figure 8.3 on page 436 shows additional classes

(FilterInputStream, FilterOutputStream) but you don’t have to know them.

- Differences between stream classes and readers/writers:

- The stream classes are used for inputting and outputting all types of binary or bytes

data (so also strings, for example).

- The reader/writer classes are used for reading and writing characters or strings only.

- They are also streams although they do not carry the word in the name.

- For the exam you only need to be familiar with the low-level stream classes that operate on files.

The rest of the non-abstract stream classes are all high-level streams.

- Always wrap a file stream with a Buffered class in practice.

- Four abstract classes that are the parents of all stream classes defined within the API:

1.InputStream

2. OutputStream

3. Reader

4. Writer

- Review of java.io class properties:

44

- A class with the word InputStream or OutputStream in its name is used for reading

or writing binary data, respectively

- A class with the word Reader or Writer in it is used for reading or writing character or

string data, respectively

- Most, but not all, input classes have a corresponding output class (exception you need

to know for the exam: PrintWriter has no accompanying PrintReader class)

- A low-level stream connects to the source directly

- A high-level stream is built on top of another stream using wrapping (operations are

filtered and applied to the original instance)

- A class with Buffered in its name reads or writes data in groups of bytes or characters

and often improves performance in sequential file systems.

- close(), flush(), markSupported(), mark(), mark(int), reset(), skip(long):

- always close streams preferably with try-with-resource statements *

- flush() to write cache to disk

- mark() to go back to a point in the stream with reset()

- first check if mark is supported with markSupported(), failing to do so may throw an

exception

- calling reset() while mark limit has passed, an exception at runtime may be thrown

(may, because it depends on the implementation)

- skip(long) returns number of skipped bytes or 0/-1 in case no bytes are skipped (end

of stream). Skip can be faster than read for large values

* try-with-resource statements can also contain multiple resources:

try (InputStream is = new FileInputStream(source); OutputStream os = new

FileOutputStream(destination)) // BOTH RESOURCES AUTOMATICALLY CLOSED {…}

- FileInputStream

- read() -> return an int but read bytes so that it can return -1 if at end of file.

- Overloaded versions exist e.g. to read a byte array used by Buffered classes.

- FileOutputStream

- write() -> write successive bytes using write(int) method.

- Overloaded versions of the write method exists that allow a byte array to be passed and

can be used by Buffered classes.

- BufferedInputStream, BufferedOutputStream

- With BufferedInputStream you use the read(byte[]) method. Returns the

number of bytes that have been read or 0 if end of file.

- BufferedOutputStream is called with write(byte[], int, int) method ->

byte[] to write, offset and length.

- FileReader, FileWriter

- Have read()/write() methods that work with char values although use an int to

hold the data so that read can return -1 to indicate end-of-file.

- close() and flush() methods which work the same as the

InputStream/OutputStream classes.

- Writer class offers a write(String) method to write a String immediately to the

stream.

- BufferedReader/BufferedWriter

45

- BufferedReader offers a readLine() method. BufferedWriter has the

write(String) method and the newLine() method.

- ObjectInputStream/ObjectOutputStream

- Serialize and deserialize objects of classes that implement the Serializable interface

(marker interface, good practice but not mandatory is to provide a serialVersionUID

and maintain it, updating it if the class changes). transient and static members are

skipped in to serialization process. Marking as transient will also avoid throwing a

NotSerializableException.

- ObjectOutputStream

- writeObject(Object): throws a NotSerializableException in case the object

or an embedded reference to the object is not serializable.

- ObjectInputStream

- readObject() returns Object (mean that it must be cast). Throws EOFException if

end of file is reached.

- Voorbeeld chainen van streams voor het serializen van objecten uit een bestand:

try(ObjectInputStream in = new ObjectInputStream(new

BufferedInputStream(new FileInputStream(filename)))) {...} //

in.readObject -> lezen van object.

- Never use the "available()" method on the InputStream to check for the end of

the stream. Rather, catch EOFException if relevant. available() can also return 0

even though there are still contents to be read.

- Object stream classes support reading and writing null values so if you read from a

serialized data stream it is always important to check for null (or use the instanceof

operator for Object streams)

- Upon deserialization the constructor and any default initializations are ignored (along

with transient and static fields).

When deserializing Java calls the first non-argument constructor for the first

nonserializable parent class, skipping the constructors of any serialized class in between.

- PrintStream/PrintWriter

- System.out and System.err are PrintStream objects

- Methods to memorize (are in both PrintStream and PrintWriter):

- write() throws IOException

- print() – overloaded with all primitive types and Object. In general calls

valueOf and calls write() method.

- println() - similar to print but adds a system dependent line break.

- format() – convenience method for writing formatted text directly to the

stream.

- printf()- identical to format (in fact, printf passes through to format)

Interacting with users

- java.io.Console (more evolved form of System.in/System.out stream classes).

- Console is a singleton class created automatically by the JVM and can be accessed by

calling System.console(). Returns null where text interactions are not supported.

- Methods:

46

o reader(), returns the Reader

o writer() returns the PrintWriter.

o format(String, Object...), printf() are identical and output data to the

users

o flush(), forces buffered output to be written immediately. Call before any

readLine(), readPassword()

o readLine(), overloaded readLine(String format, Object... args) ->

write text to user before reading from input.

o readPassword(): similar to readLine() but input is not echoed back to user.

Overloaded readPassword(String format, Object... args) to prompt

user before input. Returns character array to prevent it from going to shared

memory pool. Recommended to clear array immediately after reading.

From the questions:

c.writer() (where c is an instance of Console) returns a Writer object. You can then call

w.append(line) -> see question 5 on page 446

new File("c://book//java") -> this is not a right format of the file location. Windows requires

‘\\’, for Linux based file systems use ‘/’. Also recall that you can use the system property

System.getProperty(System.getProperty(“file.separator”)) or java.io.File.separator to retrieve the OS

dependent separator. Question 12 has two invalid ways to instantiate a file. \ and // are both not

valid separators.

Any class, abstract, concrete or final can be marked as Serializable

Question 21: note that although static fields are not taken into account when serializing a class, they

will not be null if they are assigned a value at the class level since they are available again when the

object is deserialized. So in this case, "birthPlace" might not be null upon deserialization.

Question 23: "reset puts the stream back into the position before mark was called..." -> mark was

called with 3 as the argument but the stream was at position 0 at that point. Reset would therefore

put it back to the 0th position after the loop.

HOOFDSTUK 9 NOTITIES – NIO.2

- Tabellen uit het hoofd leren: 9.1 blz. 461. Tabel 9.5 blz. 494 – niet uit het hoofd leren maar

weten wat de genoemde methoden doen.

- java.nio.file.Path interface - basic entry point and replacement of java.io.File +

support for navigating, detecting and creating symbolic links.

- Paths factory to create instance of platform specific instance (see below).

- Watch out for Paths and Path mixups in the exam: Path is the interface and Paths is the

factory class to retrieve an instance of Path.

Paths path = Paths.get(...) obviously is false and Path path = Path.get(...)

too. To get a Path instance you can invoke: Path path = Paths.get(…)

- NIO.2 offers helper classes like java.nio.file.Files - mainly operates on Path objects.

47

- Figure 9.1 (blz. 456): not clear to what extend it is relevant for the exam - overview of the

relationships of classes and interfaces in NIO.2.

- Use Paths.get(String) method to obtain a Path instance.

- Rules to learn for the exam:

o If the path starts with a forward slash it is an absolute path

o If the path starts with a drive letter it is an absolute path

o Otherwise, it is a relative path (e.g. ..\eagle)

- Paths.get(String, String...) -> generates path based on parameters where NIO puts

the platform specific separator between the strings.

- Paths.get(URI) (Paths.get(new URI(file:///home/zoodirectory)) always

requires an absolute path otherwise throws exception at runtime (like for Paths.get(new

URI(file://pandas/cuddly.png")) <-- relative path).

- Path interface contains a toUri() method to convert a path back to a URI.

- Paths.get() is shorthand for java.nio.file.FileSystem.getPath().

- FileSystem - get instance using FileSystems.

FileSystems.getDefault().getPath("pandas/cuddly.png") etc.

- FileSystem remote filesystem:

FileSystem fileSystem = FileSystems.getFileSystem(new

URI("http://www.selikoff.net"));

Path p = fileSystem.getPath("duck.txt");

- java.io.File now has a .toPath() method to convert a legacy java.io.File object to a

java.nio.file.Path. Path also has a toFile() method that returns a legacy File

instance.

Enum constants are left out in most method descriptions in the book but you must recognize them if

they are provided to methods in the exam (table 9.1 page 461)

- Viewing the path:

o java.nio.Path.toString(),

o .getName(int) -> get name of path element at index. Is zero indexed and doesn’t

include the root segment (/land/hoppy/harry.happy -> 0 = land)

o .getNameCount() returns 0 if Path represents root.

- Accessing Path components:

48

o getFileName() – returns Path representing the filename, the fartest element

from the root or start of the relative path.

o getParent() – returns a Path instance representing the path or null if there is no

such parent.

o getRoot() – will stop at top-level element in case the path is relative. getRoot()

returns the root or null if the Path is relative.

- Checking path type:
o isAbsolute()

o toAbsolutePath() - converts to an absolute path or returns a copy of the Path

in case it was already absolute. Called on a relative path object,

toAbsolutePath() preprends directories from the perspective of the working

directory.

- subPath(int, int) – create new Path instance based on the subPath indexes. Inclusive

start index, exclusive end index. Warning: root is not included. So example on page 466 if you

have this:

Path path = Paths.get("/mammal/carnivore/raccoon.image");

And then invoke:

System.out.println("Subpath from 0 to 3 is: " + path.subPath(0, 3));

It will return: "Subpath from 0 to 3 is: mammal/carnivore/raccoon.image" (so

without the '/' in the first position). Throws IllegalArgumentException when values are

invalid (e.g. path.subPath(1, 1); or path.subPath(1, 4);)

- relativize(Path)

o returns a Path instance relative to the given path.

o When both paths are relative, relativize computes the paths as if both Paths are in

the same working directory.

o Both the path and the given path must be relative or both absolute, will throw

IllegalArgumentException if you mix them.

o When on Windows file systems, they must also both be in the same root directory

(have the same drive letter).

o Does not operate on the file system, just takes the elements of the paths to

compute the relative path.

o Does not clean up the path (so ‘.’ characters are left in tact)

- resolve(Path)

o Joins two paths with each other.

o Returns a new path that has the current path joined with the given path.

o Relative and absolute paths can be mixed. path1.resolve(path2); -> if path1

is absolute and path2 is relative, a path is returned with both paths combined.

o If both paths are absolute, path1 will be ignored and a copy of path2 is returned.

o If path1 is relative and path2 is absolute, then path1.resolve(path2) will

ignore path1 and return a copy of path2.

49

o If you would turn them around, then path2 is appended to path1:

Path one = Paths.get("temp\\absolute.txt");

Path two = Paths.get("D:\\development\\why.blaat");

System.out.println("Resolved they become: " +

one.resolve(two));

System.out.println("Or the other way around: " +

two.resolve(one));

Prints:

Resolved they become: D:\development\why.blaat

Or the other way around:

D:\development\why.blaat\temp\absolute.txt

o Does not clean up the path (so ‘.’ characters are left in tact)

- normalize(Path)

o removes redundancies in a path. Does not operate on the actual file system.

o Watch out for normalize rules:

▪ It removes the redundant '..' and '.' characters but also resolves what the

directory would be. So this: E:\data\..\user\home becomes

E:\user\home because the '..' denotes one directory up.

- toRealPath()

o may throw an IOException

o checks the file system for existence

o implicitly calls normalize()

o the only method that accepts NOFOLLOW_LINKS

o getting real path of current working directory: Paths.get(".").toRealPath();

Paths method for the exam (as described above):

Getting a Path instance:

- Paths.get(String)

- Paths.get(String, String...)

- Paths.get(URI)

- FileSystems.getDefault().getPath(String)

- FileSystems.getFileSystem(URI).getPath(String)

- java.io.File.toPath (legacy class extended to support conversion to

java.nio.file.Path)

Working with Paths:

- Path.toFile() (converts to legacy java.io.File instance)
- Path.toString()

- Path.getName(int)

- Path.getNameCount()

- Path.getFileName()

50

- Path.getParent()

- Path.getRoot()

- Path.isAbsolute()

- Path.toAbsolutePath()

- Path.subPath(int, int)

- Path.relativize(Path)

- Path.resolve(Path)

- Path.toRealPath()

 Interacting with files -> java.nio.file.Files

- Files.exists(Path)

- Files.isSameFile(Path, Path):

o returns true if files are same.

o Throws IOException if either file does not exist.

o Does not check content of the files.

o Follows symbolic links.

o First checks equals methods, if true then returns true; if false then checks location

on disk.

- Files.createDirectory(Path) and Files.createDirectories(Path)

o same as java.io.File.mkdir() and java.io.File.mkdirs().

o Throws IOException if parent does not exist in the case of the

createDirectory method.

o Also accepts optional FileAttribute<?> instance to set attribute on the

directories.

- Files.copy(Path, Path, CopyOption… options) throws IOException

o Copies files or directory from one place to another.

o Directory copies are shallow: subdirectories and their contents are not copied (if the

file is a directory, creates an empty directory in the target).

o By default: does not overwrite existing files (fails if target already exists or is a

symbolic link), follows symlinks, and does not copy file attributes.

o Options can be configured by providing the additional options "NOFOLLOW_LINKS",

"REPLACE_EXISTING" and "COPY_ATTRIBUTES".

o Overloaed version of copy takes stream from the java.io package to read and

write from and to a stream.

o Allows to copy file contents to an external file system, a website etc. Takes two

parameters, one of them being a Path instance. Depending on reading or writing

the other parameter is an InputStream or OutputStream respectively.

- Files.move()

o throws IOException and optionally a AtomicMoveNotSupportedException.

o By default follows symbolic links, doesn't do an atomic move, throw an exception if

the file already exists.

o Behavior can be changed using the "NOFOLLOW_LINKS", "ATOMIC_MOVE" and

"REPLACE_EXISTING".

- Files.delete(Path) and Files.deleteIfExists(Path)

- Files.newBufferedReader(Path, Charset), Files.newBufferedWriter(Path,

Charset) - reading and writing using a stream. By default the writer overwrites existing files.

- Files.readAllLines(Path) - reads all lines in the provided file and returns them in an

ordered list of String values. An overloaded version lets you specify the charset.

51

Methods from Files class for exam:

- Files.isDirectory(Path)

- Files.isRegularFile(Path) – if sym. link points to regular file: also returns true
- Files.isSymbolicLink(Path)

- Files.isHidden(Path) throws IOException

- Files.isReadable(Path)

- Files.isExecutable(Path)

- Files.size(Path) throws IOException - in bytes. Result is undefined and system

dependent if called on a directory.
- FileTime Files.getLastModifiedTime(Path) throws IOException

- Files.setLastModifiedTime(Path, FileTime) throws IOException

- UserPrincipal Files.getOwner(Path) throws IOException

- Files.setOwner(Path, UserPrincipal) throws IOException

- Files.readAttributes(Path) throws IOException

- Files.getFileAttributeView(Path, Class<V>) throws IOException – provides a

direct resource for modifying file information. Can be used to update the file system-

dependent attributes but also to read the attributes. You can use the readAttributes()

method on the view to do so. This returns a BasicFileAttributes object. Class can be

BasicFileAttributeView.class, for example.
- Files.walk(Path)throws IOExcecption

- Files.find(Path, int, BiPredicate) throws IOException

- Files.list(Path) throws IOException – operates on items that are direct children of

the parent (alternative to using Files.walk with depth of 1)

- Files.readAllLines(Path) throws IOException – reads all lines of a file at once.

- Files.lines(Path) throws IOException – with Stream (lazy)

Additional methods

- Get a UserPrincipal from the filesystem is done with the FileSystem class. An instance can

be instantiated in two ways:

1. By using the path instance – path.getFileSystem()

2. By using the factory class FileSystems – FileSystems.getDefault()

You can then get the UserPrincipalLookupService instance and lookup a UserPrincipal by

name:

path.getFileSystem().getUserPrincipalLookupService().lookupPrincipalByName(

“jane”);

Attributes and view class you need to know for the exam:

BasicFileAttributes, view class: BasicFileAttributeView. They represent a basic set of file

attributes that is present on all file systems. Common methods you should know for the exam:

- creationTime()

- lastModifiedTime()

- setTimes(FileTime lastModifiedTime, FileTime lastAccessTime, FileTime

createTime)

The new Stream methods

- Two common strategies to walk a directory tree:

52

o Depth-first search – directory is traversed from the root to an arbitrary leaf and then

navigated back to the root. Search depth is the distance from the root to current

node. Mostly a max. depth is maintained.

o Breadth-first search – starts at root and processes all elements of each particular

depth, or distance from the root, before proceeding to the next depth level.

- Depth-first search is used by the Streams API with a default max. depth of
Integer.MAX_VALUE

NIO.2 stream based methods:

- Files.walk(Path) throws IOException – returns a Stream<Path> object that traverses

the directory in a depth-first, lazy manner (the contents have not yet been loaded).

o Overloaded method that takes an additional int for the depth is also present where

0 means the current path record.

o Overloaded method that take the FOLLOW_LINKS option exists. If you provide that,

the walk() method will traverse the paths it has visited and throws a

FileSystemLoopException if a cycle is detected. It is recommended to specify

depth.

- Files.find(Path, int, BiPredicate) – More advanced method. BiPredicate in the

form of (T, U) -> Boolean object types are Path and BasicFileAttributes. int

specifies the max depth. Allows you to search directories in a more advanced way like:

try {

 Stream<Path> stream = Files.find(path, 10, (p,a) ->

p.toString.endsWith(“.java”) && a.lastModifiedTime().toMillis() >

dateFilter);

 stream.forEach(System.out::println);

} catch (Exception e) {

 // Handle exception

}

- Files.list(Path) – returns a stream of Path objects that are direct children of the parent

(similar to the java.io.File.listFiles() method but then on a Stream)

- Files.lines(Path) – returns a Stream<String> object. Alternative to

Files.readAllLines() which might result in an OutOfMemoryError.

Addditional notes about Enthuware tests:

- Page 489 explains that you would normally require an entire class definition to do what they did

in one line and mentions the FileVisitor. Although the book mentions that you were

required to know that interface for OCP7 and doesn’t further explain that interface or any

implementing classes, the test exams of Enthuware requires you to be familiar with it. Note that

Appendix C does have a complete chapter about the interface. To complement these notes

therefor: if you want to walk through a directory structure recursively, which interface do you

need to implement for this purpose and which class do you need to extend to avoid

implementing all the methods in that interface:

o FileVisitor and SimpleFileVisitor

53

- There is not much information about the PathMatcher interface although knowledge of this

interface is required:

java.nio.file.PathMatcher is an interface that declares only one method:

boolean matches(Path path)

Tells if given path matches this matcher's pattern.

Parameters: path - the path to match. Returns: true if, and only if, the path matches this

matcher's pattern

- You need to know the WatchService which is described in Appendix C in the book. In short:

WatchService has two types of methods for retrieving the WatchKeys - poll and take. The

two poll methods return null if no key is present and do not wait for ever. The take method

doesn't return null but keeps waiting until a key is available.

Vragen:

3. setTimes() is enkel beschikbaar op de BasicFileAttributeView. Met

BasicFileAttributes kun je alleen lezen.

9. “performance is not often the reason to prefer one to the other”: lijkt me onjuist maar wordt hier

toch als toelichting gebruikt waardoor A onjuist zou zijn.

12. hier wordt over de regel heen gestapt dat je bij het meegeven van een URI een absolute path

moet gebruiken. Dit mag dus wel: Paths.get(new URI(“cheetah.txt”))

17. ‘..’ resolved naar de root path. ‘..’ en getParent() zijn conceptueel gelijk. Let erop dat je dus

gewoon ‘..’ kunt gebruiken in de getPath() methode.

HOOFDSTUK 5 NOTITIES – DATES, STRINGS, AND LOCALIZATION

Tabellen uit het hoofd leren: table 5.2, blz. 243 (maar wijst eigenlijk zichzelf); table 5.9 page 267

java.time.*

LocalDate – date without time and timezone information

LocalTime – time without date and timezone information

LocalDateTime – date and time without timezone information

ZonedDateTime – date and time with timezone information.

All have a .now() static method representation (ZonedDateTime.now() – returns a

ZonedDateTime of now with date, time and timezone information)

All the creation methods below use static methods (factories), the constructor can not be used.

Creating a LocalDate instance:

- public static LocalDate of(int year, int month, int dayOfMonth);

- public static LocalDate of(int year, Month month, int dayOfMonth);

54

Months start with 1! Watch out for exam questions where Month is compared with an int

(Month.JANUARY = 1 does not compile).

Creating a LocalTime instance (multiple overloaded static methods varying in detail):

- public static LocalTime of(int hour, int minute);

- public static LocalTime of (int hour, int minute, int second);

- public static LocalTime of(int hour, int minute, int second, int

nanosecond);

Creating a LocalDateTime instance: a lot of different variations possible including a method that

takes a LocalDate and LocalTime as a parameter to combine them to a LocalDateTime. Entire

list is on page 238.

Creating a ZonedDateTime requires you to create a ZoneId first using the static method: of, like

so:

ZoneId zone = ZoneId.of(“US/Eastern”);

Then you can use one of three ZonedDateTime static methods to create a ZonedDateTime

instance:

- public static ZonedDateTime.of(int year, int month, int dayOfMonth, int

hour, int minute, int second, int millisecond, ZoneId zone); -> no version

that accepts a Month enum.
- public static ZonedDateTime.of(LocalDate date, LocalTime time, ZoneId

zone);

- public static ZonedDateTime.of(LocalDateTime dateTime, ZoneId zone);

Note that exceptions may be thrown in case invalid values are used in the create methods e.g. when

you pass in 32 as a month value.

Date and time instances are immutable. Manipulating them therefor returns a new instance:

LocalDate date = LocalDate.of(2014, Month.JANUARY, 20);

date = date.plusDays(2);

date = date.plusWeeks(1);

date = date.plusMonths(1)

date = date.plusYears(5);

Note that the exam might try to trick you not (re-) assigning a date instance after calling a

manipulation method and printing the date instance:

LocalDate date = LocalDate.of(2020, Month.JANUARY, 20);

date.plusDays(20);

System.out.println(date);  prints January 20, 2020…

Similar methods exist for subtracting date and time elements and the methods can also be used with

LocalDateTime. Furthermore, date and time methods can be chained e.g.:

LocalDate date = LocalDate.of(2020, Month.JANUARY, 20);

LocalTime time = LocalTime.of(5, 15);

LocalDateTime dateTime = LocalDateTime.of(date,

time).minusDays(1).minusHours(10).minusSeconds(30);

When printing, Java hides seconds and milliseconds if we aren’t using them but when they become

relevant it might be printed.

55

Adding and subtracting can also be done using Period and Duration instances

(date.minus(Period.ofWeeks(1)); date.plus(Duration.ofDays(23));)

You have to use Durations and Periods that are compatible with the instances:

LocalDate date = LocalDate.of(2015, 1, 20);

date.plus(Duration.ofHours(1)); <- UnsupportedTemporalException

Warning: even though you have a Duration and a Period of the same lentgth:

Duration d = Duration.ofDays(1);

Period p = Period.ofDays(1);

Only Period is compatible with a LocalDate. So, this is not possible (assuming te above

declarations):

LocalDate.of(2015, Month.JANUARY, 10).plus(d);

… while this is:

LocalDate.of(2015, Month.JANUARY, 10).plus(p);

Period: a day or more of time. Ways to create a Period instance (5):

- Period.ofYears(1);

- Period.ofMonths(2);

- Period.ofWeeks(1);

- Period.ofDays(1);

- Period.of(1, 0, 7); <- every year and seven days

Warning: you cannot chain methods when you create a Period

(Period.ofYears(1).ofWeeks(2);)

Displaying a period always prepended with a ‘P’ and then the years, months and days (P1Y1M1D for

one year, one month and one day). In case no value is present, it is omitted so

Period.ofMonths(3) would print:

P3M

Period.ofWeeks(3); prints P21D

Periods can only be used by compatible types so trying to add a period of a month to a LocalTime

fails with an exception at runtime.

Duration: for smaller units of time (days, hours, minutes, seconds, nanoseconds). Used with objects

that have time and printed with ‘PT’ (Period of Time).

- Duration.ofDays(1); // PT24H

- Duration.ofHours(1); // PT1H

- Duration.ofMinutes(1); //PT1M

- Duration.ofSeconds(1); // PT1S

- Duration.ofMillis(1); // PT0.001S

- Duration.ofNano(1); //PT0.000000001S

- Duration.of(1, ChronoUnit.DAYS);

- Duration.of(1, ChronoUnit.HOURS);

56

- Duration.of(1, ChronoUnit.MINUTES);

- Duration.of(1, ChronoUnit.SECONDS);

- Duration.of(1, ChronoUnit.MILLIS);

- Duration.of(1, ChronoUnit.NANOS);

(Duration doesn’t have a factory method that takes multiple units)

ChronoUnit has a way to calculate how far apart two temporal parts are, like:

ChronoUnit.HOURS.between(LocalTime.of(5, 15), LocalTime.of(6, 30); -> 1

(rounds)

Instant class represents a specific moment in time in the GMT time zone.

- Can be used to calculate a duration between two instants like:

Instant now = Instant.now();

// do something

Instant then = Instant.now();

Duration duration = Duration.between(now, then);

System.out.println(duration.toMillis());

- ZonedDateTime instances can be turned into an instance (and only ZonedDateTime

instances since they contain timezone information and an Instance is a point in time at GMT).

ZonedDateTime.toInstant();

Note that the ZonedDateTime automatically translates the ZonedDateTime to the date-time

calculated to GMT (Z – Zulu).

- Allows to add any unit of day or smaller only!

Instant tomorrow = instant.plus(1, ChronoUnit.DAYS);

Instant nextHour = instant.plus(1, ChronoUnit.HOURS);

// THIS FAILS:

Instant nextWeek = instant.plus(1, ChonoUnit.WEEKS);

Daylight savings is also on the exam and you need to know what happens at times when the hour is

jumped one hour ahead (Spring) and one hour back (Fall) and remember that GMT doesn’t

participate. See examples on page 252.

Note that in case you create a time that doesn’t exist because of DST, Java rolls it forward – see page

253.

String review just for refreshing:

- String class is final and String objects are immutable

- String pool

- Strings can be compared with the == operator but may not always be equal in case they are

created with a constructor or method call. Reason is that if you assign a String like this: String

s1 = “test”; creates a string in the pool of strings automatically and another assignment:

String s2 = “test”; would point to the same instance. String s3 = new

String(“test”);, however, creates a new object explicitly and puts that in the pool.

- Better to use the equals() method.

57

- Cocatenating with the + operator creates a new string instance

- “1” + 2 + 3 -> “123” but 1 + 2 + “3” -> “33”

- If you update a String value in a loop: use StringBuilder (StringBuilder is mutable)

- If multiple Threads are updating the same object: use StringBuffer (is Thread safe, just like

String and unlike StringBuilder which is not)

Internationalization and localization

java.util.Locale – get the default locale: Locale.getDefault();

Formats:

- Either only language code (must be lowercase): fr

- Or language code, underscore, countrycode (most be uppercase): en_US

Three main ways to create Locale:

- Using constants:
o Locale l = Locale.GERMAN; //de

o Locale l = Locale.GERMANY; //de_DE

- Using the constructor and passing in the language or language and country code:
o Locale l = new Locale(“fr”));

o Locale l = new Locale(“fr”, “FR”));

- Using the Builder pattern:
o Locale l = new

Locale.Builder().setLanguage(“en”).setRegion(“US”).build();

o Locale l = new

Locale.Builder().setRegion(“US”).setLanguage(“en”).build();

Java will let you create a Locale with an invalid language and region setting but it will not match

the Locale you want to use and doesn’t behave as expected.

You can set the default locale for just the application with the Locale.setLocale(Locale)

method (will return that locale if you call Locale.getDefault()).

Resource bundles:

- Name followed by underscore followed by language and the extension of the file:

Zoo_en.properties

Zoo_fr.properties

- Files contain key/value pairs separated by:

o ‘=’

o ‘ ‘ (an empty space)

o ‘:’

o !, # -> comment

o White spaces before and after the lines are ignored

o Escape characters can be used

o Break a line using a backslash and continue on the next line (‘\’)

- Get the resource bundle based on a locale:

ResourceBundle.getBundle(“Zoo”, new Locale(“en”, “US”));

58

- … or just by name:

ResourceBundle.getBundle(“Zoo”); // uses default locale

- Get a string based on a key:

resourceBundle.getString(String key);

- Get all the keys in a resource bundle:

Set<String> keys = resourceBundle.keySet();

- Convert the resource bundle to a Properties instance with:

Properties properties = new Properties();

resourceBundle.keySet().stream().forEach(k -> props.put(k,

resourceBundle.getString(k));

Properties:

- Call getProperty(“key”); to get a key, returns null if it doesn’t exist

- Call getProperty(“key”, “defaultValue”); to get a key and provide a default value in

case “key” doesn’t exist.

- get(Object key) – inherited. Also allows to get the property value but doesn’t allow to

provide a default in case key is not found.

Java class resource bundles:

- Allows any type for the value part (key remains a String)

- Class name is name, underscore language and extends ListResourceBundle

- Implement getContents() that returns a two dimensional array

- Main advantages:

o You can use a value that is not a String

o You can create the values at runtime.

When you request a resource bundle, Java tries to find the most specific one. A class resource

bundle get preference over file resource bundle (in case there is a tie).

Rules to match resource bundles:

- Look for the property file after the matching Java class (Java class has precedence)

- Drop one thing at a time if there are no matches. First drop the country and then the language.

- Look at the default locale and the default resource bundle last.

Mind the hierarchy rules as well. Rules are to match a resource bundle that acts as a base. It can get

them from any parent of that resource bundle. Going from most specific to least specific. See table

5.8 page 265.

Format numbers – java.text package

Several factory methods to get a NumberFormat:

59

- General purpose formatter:
o NumberFormat.getInstance();

o NumberFormat.getInstance(Locale locale);

- Same as getInstance:
o NumberFormat.getNumberInstance();

o NumberFormat.getNumberInstance(Locale locale);

- Formatting monetary amounts:
o NumberFormat.getCurrencyInstance();

o NumberFormat.getCurrencyInstance(Locale locale);

- Formatting percentages:
o NumberFormat.getPercentageInstance();

o NumberFormat.getPercentageInstance(Locale locale);

.parse(), turn a String into a number (throws ParseException if parsing fails). Also, it parses

until it finds a character that it can not parse and returns only the part it can parse. If the first

character is a character it can not parse, it throws ParseException. The return value of parse()

is a Number object which can subsequently be cast to its appropriate data type. Behavior depends

on the type of formatter. If you instantiate a NumberFormat using the getCurrencyInstance()

method, you can’t just call parse with a number (like .parse(“1”)) if you are working in the Dutch

locale.

Comparing DecimalFormat from Appendix C to the NumberFormat class:

- DecimalFormat is a subclass of NumberFormat

- It is instantiated with a constructor, taking a string of the format of the decimal number

- NumberFormat also has a constructor but that’s typically not used to instantiate an instance of

NumberFormat.

.format(), turn a number into a String.

The format classes are not tread safe, do not store them in instance variables or static variables.

java.time.format.DateTimeFormatter to format any type of date and/or time object:

- Can be used in LocalDate, LocalTime, LocalDateTime object’s .format() methods

- Instantiated by invoking methods that take a value of FormatStyle (FormatStyle.SHORT,

FormatStyle.MEDIUM), rest is not relevant for exam):
o ofLocalizedDate(FormatStyle style);

o ofLocalizedTime(FormatStyle style);

o ofLocalizedDateTime(FomatStyle style);

- Or instantiated with a constant:
o DateTimeFormatter.ISO_LOCAL_DATE

o DateTimeFormatter.ISO_LOCAL_TIME

o DateTimeFormatter.ISO_LOCAL_DATE_TIME

- Or instantiated with a custom format:
o DateTimeFormatter.ofPattern(“MMMM DD, yyyy hh:mm);

- Formatting can be done by:

o Calling the formatter’s .format() method passing in an instance of LocalDate,

LocalTime or LocalDateTime where the allowed parameter is dependent on the

chosen DateTimeFormatter (e.g. passing a LocalTime instance to .format()

on a DateTimeFormatter that is created with the ofLocalizedDate method will

fail)

60

o Calling .format() on the Date/Time/DateTime instance itself (where the formatter

is passed as a parameter).

- Trying to format dates in a format of which the corresponding formatter doesn’t have a

pattern for will result in an exception:

DateTimeFormatter df = DateTimeFormatter.ofPattern(“hh:mm”);

f.format(time);

f.format(dateTime);

f.format(date); // WILL THROW EXCEPTION

The parse methods can also be invoked on the instances of date/time/datetime and with a

formatter. Two examples:

DateTimeFormatter f = DateTimeFormatter.ofPattern(“MM dd yyyy”);

LocalDate date = LocalDate.parse(“01 02 2015”, f);

LocalTime time = LocalTime.parse(“11:22”);

Additional notes following the test exams of Enthuware:

- You are expected to know that LocalDate, LocalTime, LocalDateTime and

ZonedDateTime implement the TemporalAccessor interface.

The entire description from that test:

Here are some points that you should keep in mind about the new Date/Time classes

introduced in Java 8 -

1. They are in package java.time and they have no relation at all to the old java.util.Date and

java.sql.Date.

2. java.time.TemporalAccessor is the base interface that is implemented by LocalDate,

LocalTime, and LocalDateTime concrete classes. This interface defines read-only access to

temporal objects, such as a date, time, offset or some combination of these, which are

represented by the interface TemporalField.

3. LocalDate, LocalTime, and LocalDateTime classes do not have any parent/child relationship

among themselves. As their names imply, LocalDate contains just the date information and no

time information, LocalTime contains only time and no date, while LocalDateTime contains

date as well as time. None of them contains zone information. For that, you can use

ZonedDateTime.

These classes are immutable and have no public constructors. You create objects of these

classes using their static factory methods such as of(...) and from(TemporalAccessor). For

example, LocalDate ld = LocalDate.of(2015, Month.JANUARY, 1); or LocalDate ld =

LocalDate.from(anotherDate); or LocalDateTime ldt = LocalDateTime.of(2015,

Month.JANUARY, 1, 21, 10); //9.10 PM

Since you can't modify them once created, if you want to create new object with some changes

to the original, you can use the instance method named with(...). For example, LocalDate

sunday = ld.with(java.time.temporal.TemporalAdjusters.next(DayOfWeek.SUNDAY));

61

4. Formatting of date objects into String and parsing of Strings into date objects is done by

java.time.format.DateTimeFormatter class.

This class provides public static references to readymade DateTimeFormatter objects through

the fields named ISO_DATE, ISO_LOCAL_DATE, ISO_LOCAL_DATE_TIME, etc. For example -

LocalDate d1 = LocalDate.parse("2015-01-01", DateTimeFormatter.ISO_LOCAL_DATE);

The parameter type and return type of the methods of DateTimeFormatter class is the base

interface TemporalAccessor instead of concrete classes such as LocalDate or LocalDateTime. So

you shouldn't directly cast the returned values to concrete classes like this

LocalDate d2 = (LocalDate) DateTimeFormatter.ISO_LOCAL_DATE.parse("2015-01-01"); //will

compile but may or may not throw a ClassCastException at runtime.

You should do like this

LocalDate d2 = LocalDate.from(DateTimeFormatter.ISO_LOCAL_DATE.parse("2015-01-01"));

5. Besides dates, java.time package also provides Period and Duration classes. Period is used

for quantity or amount of time in terms of years, months and days, while Duration is used for

quantity or amount of time in terms of hour, minute, and seconds.

Vragen:

7: Hier worden uren opgeteld bij een date wat niet kan maar je krijgt dan al een compiler error end

us is vraag E fout.

10: als je een DateTimeFormatter hebt aangeroepen met ofLozalizedTime en een style

FormatStyle.SHORT en die formatteert op een LocalDateTime object wordt enkel de tijd

informatie getoond (let op “ofLocalizedTime”).

11: Period staat geen chaining toe maar het compileert en draait wel gewoon: alleen de laatste

methode die je aanroept telt.

17: get is de methode die werd overge-erft en verwacht een key waarde. getProperty ondersteunt

daarnaast de key waarde en een default waarde. In de vraag warden de twee methoden door elkaar

gehaald. In dit geval zou het een compilatieprobleem opleveren.

HOOFDSTUK 6 NOTITIES – EXCEPTIONS AND ASSERTIONS

Errors – fatal, should not be caught by the program. Is legal to catch it, but not good practice.

Unchecked exception – or runtime exception can optionally be caught but don’t have to be caught

or declared.

Checked exception – have to follow the handle or declare rule. Is any class that extends Exception

but is not a runtime exception.

Memmorize:

62

Runtime exceptions you need to memorize:

- ArithmeticException – thrown by the JVM when code attempts to divide by zero.

- ArrayOutOfBoundsException – thrown by the JVM when the code uses an illegal index to

access an array

- ClassCastException – thrown by the JVM when an attempt is made to case an object o a

subclass of which it is not an instance .

- IllegalArgumentException – thrown by the program to indicate that a method has been

passed an illegal or inappropriate argument.

- NullPointerException – Thrown by the JVM when there is a null reference where an

object is required

- NumberFormatException – thrown by the program when an attempt is made to convert a

string to a numeric type, but the string doesn’t have an appropriate format.

- java.lang.ArrayStoreException – trying to store the wrong data type in an array

- java.time.DateTimeException – receiving an invalid format string for a date

- java.util.MissingResourceException – trying to access a key or resource bundle that

does not exist.

- java.lang.IllegalStateException, java.lang.UnsupportedOperationException

– attempting to run an invalid operation in collections and concurrency.

Checked exceptions you need to memorize:

- java.text.ParseException – may be thrown when converting a string to a number

- java.io.IOException, java.io.FileNotFoundException,

java.io.NotSerializableException – Dealting with IO and NIO.2 issues. IOException

is the parent class, there are a number of subclasses. You can assume any java.io is checked.

- java.sql.SQLException – Dealing with database issues, SQLExceptoin is the parent

class. You can assume any subclass of java.sql is checked.

63

Try statement needs to have either or both of the catch and finally clauses except when it is a

try-with-resources statement.

- Java checks the exceptions in the order in which they appear

- It is illegal to declare a sub-class exception in a catch block that is lower down in the list than

a superclass exception because it will be unreachable code.

- Java will not allow you to declare a catch block for a checked exception type that cannot

potentially be thrown by the try clause body.

- In the declaration of a method you can also declare that it throws a runtime exception (but is

not necessary).

- In a multi-catch block: the exceptions can appear in any order (but with one variable name)

- You can’t use subclasses in the multi-catch block (because they would match both:

try{

 throw new IOException();

} catch (FileNotFoundException | IOException e) {  does not compile
 …

}

- Re-assigning the exception in the catch block is legal in a single catch block (although bad

practice) but illegal in a multi-catch block (in which case the exception is effectively final)

- In a try-with-resources/auto resource management block the implicit finally block runs

before a defined one. You can also not use a resource created in the try clause in the catch or

finally block (its scope is only within the try block).

- You can only use this functionality on classes that implement the AutoClosable interface

o Has one method:

public void close() throws Exception;

o If you would throw an exception in the implementation of close(), you would

have to handle that exception also in an try-with-resource block (by handling it in a

catch block or by declaring it in the method)

- A method that overrides another method is allowed to declare more specific exceptions than

the parent or even none at all.

- There is also a Closable interface that existed before the AutoClosable interface. It

restricts the type of exception thrown to IOException and requires the implementations to

be idempotent (which the AutoClosable doesn’t but it is encouraged to make it idempotent)

- Java closes resources in the reverse order from which it created them:

try (JammedTurkeyCage t1 = new JammedTurkeyCage(); JammedTurkeyCage t2

= new JammedTurkeyCage();)  t2 is closed before t1…

- If multiple exceptions are thrown of the same type, only the primary exception is caught. The

so called suppressed exception(-s) can be retrieved by calling getSupressed() on the

primary exception. Warning: if the primary exception is a RuntimeException and a sub-class

is thrown thereafter, this will still be suppressed. So in this example:

try (JammedTurkeyCage t = new JammedTurkeyCage()) {

64

 throw new RuntimeException(“turkeys ran off”);

} catch (IllegalStateException e) {

 System.out.println(“caught: “ + e.getMessage();

}

…assuming that the close() method of the auto-closable JammedTurkeyCage would throw

an IllegalStateException the exception would not be caught in the above exception.

Instead it is suppressed and the RuntimeException is thrown.

- Exceptions are only suppressed if they are thrown in the same try clause. If you, for example,

throw a new exception in the finally block, it will not be suppressed (even though an

exception has been thrown in the try clause).

Assertions:

- assert boolean_expression;

assert boolean_expression: error_message;

- Throws a java.lang.AssertError if result is false (so an error which you are not supposed

to catch or throw)

- When switched off, skipped.

- Enable by:

o Using the -enableassertions flag on the command line or the shortcut flag -ea

o Without parameters: enables for all Java classes except the System classes (classes

that are part of the Java runtime)

o With parameters:

▪ Enable for classes in the com.wiley.demos package:

java -ea:com.wiley.demos… my.programs.Main

▪ Enable for just one class:

java -ea:com.wiley.demos.TestColors my.programs.Main

▪ Enable for package and disable for a specific class:

java -ea:com.wiley.demos… -da:com.wiley.demos.TestColows

my.Programs.Main

Vragen:

- Multi-catch block does not allow redundancy (so you can’t put subclasses of exceptions in the

same multi-catch block).

- Try-with-resources closes resources in reverse order

- If a single exception is caught, the same type or a sub-class can be assigned to the catch

variable (question 12)

- You can declare a superclass of an Exception to be thrown in a method and throw a subclass

- In a multi-catch the variable in the catch block is effectively final and cannot be reassigned.

- A runtime exception can be thrown by any method. Closable has IOException in its

signature but that doesn’t mean at can’t throw RuntimeException (and any sub class

thereof).

65

- Keep in mind that you can’t use an exception in the catch block that is never thrown in the try

block (question 19).

